Price Aggregator
The PriceAggregator
contract serves as a sophisticated tool designed to compute the aggregated weighted average price of the crvUSD
currency across a variety of liquidity pools, employing an advanced methodology that incorporates the exponential moving-average (EMA) of Total Value Locked (TVL) to ensure accurate and reliable pricing data.
The calculated price is primarily used as an oracle for calculating the interest rate, but also for PegKeepers to determine whether to mint and deposit or withdraw and burn.
Contract Source & Deployment
Source code is available on Github. Relevant contract deployments can be found here.
Calculations¶
The PriceAggregator
contract calculates the weighted average price of crvUSD across multiple liquidity pools, considering only those pools with sufficient liquidity (MIN_LIQUIDITY
= 100,000 * 10**18). This calculation is based on the exponential moving-average (EMA) of the Total Value Locked (TVL) for each pool, determining the liquidity considered in the price aggregation.
EMA TVL Calculation¶
The price calculation begins with determining the EMA of the TVL from different Curve Stableswap liquidity pools using the _ema_tvl
function. This internal function computes the EMA TVLs based on the following formula, which adjusts for the time since the last update to smooth out short-term volatility in the TVL data, providing a more stable and representative average value over the specified time window (TVL_MA_TIME
set to 50,000 seconds):
The code snippet provided illustrates the implementation of the above formula in the contract.
_ema_tvl
TVL_MA_TIME: public(constant(uint256)) = 50000 # s
@internal
@view
def _ema_tvl() -> DynArray[uint256, MAX_PAIRS]:
tvls: DynArray[uint256, MAX_PAIRS] = []
last_timestamp: uint256 = self.last_timestamp
alpha: uint256 = 10**18
if last_timestamp < block.timestamp:
alpha = self.exp(- convert((block.timestamp - last_timestamp) * 10**18 / TVL_MA_TIME, int256))
n_price_pairs: uint256 = self.n_price_pairs
for i in range(MAX_PAIRS):
if i == n_price_pairs:
break
tvl: uint256 = self.last_tvl[i]
if alpha != 10**18:
# alpha = 1.0 when dt = 0
# alpha = 0.0 when dt = inf
new_tvl: uint256 = self.price_pairs[i].pool.totalSupply() # We don't do virtual price here to save on gas
tvl = (new_tvl * (10**18 - alpha) + tvl * alpha) / 10**18
tvls.append(tvl)
return tvls
Aggregated Price Calculation¶
The _price
function then uses these EMA TVLs to calculate the aggregated prices by considering the liquidity of each pool. A pool's liquidity must meet or exceed 100,000 * 10**18
to be included in the calculation. The function adjusts the price from the pool's price_oracle
based on the position of crvUSD in the liquidity pair, ensuring consistent price representation across pools.
_price
@internal
@view
def _price(tvls: DynArray[uint256, MAX_PAIRS]) -> uint256:
n: uint256 = self.n_price_pairs
prices: uint256[MAX_PAIRS] = empty(uint256[MAX_PAIRS])
D: uint256[MAX_PAIRS] = empty(uint256[MAX_PAIRS])
Dsum: uint256 = 0
DPsum: uint256 = 0
for i in range(MAX_PAIRS):
if i == n:
break
price_pair: PricePair = self.price_pairs[i]
pool_supply: uint256 = tvls[i]
if pool_supply >= MIN_LIQUIDITY:
p: uint256 = price_pair.pool.price_oracle()
if price_pair.is_inverse:
p = 10**36 / p
prices[i] = p
D[i] = pool_supply
Dsum += pool_supply
DPsum += pool_supply * p
if Dsum == 0:
return 10**18 # Placeholder for no active pools
p_avg: uint256 = DPsum / Dsum
e: uint256[MAX_PAIRS] = empty(uint256[MAX_PAIRS])
e_min: uint256 = max_value(uint256)
for i in range(MAX_PAIRS):
if i == n:
break
p: uint256 = prices[i]
e[i] = (max(p, p_avg) - min(p, p_avg))**2 / (SIGMA**2 / 10**18)
e_min = min(e[i], e_min)
wp_sum: uint256 = 0
w_sum: uint256 = 0
for i in range(MAX_PAIRS):
if i == n:
break
w: uint256 = D[i] * self.exp(-convert(e[i] - e_min, int256)) / 10**18
w_sum += w
wp_sum += w * prices[i]
return wp_sum / w_sum
The process involves:
- Storing the price of
crvUSD
in aprices[i]
array for each qualifying pool. - Recording each qualifying pool's supply (TVL) in
D[i]
, adding this supply toDsum
, and accumulating the product of thecrvUSD
price and pool supply inDPsum
. - Iterating over all price pairs to perform the above steps.
Finally, the contract:
-
Calculates an average price:
\[\text{average price} = \frac{\text{DPSum}}{\text{DSum}}\] -
Computes a variance measure
e
for each pool's price relative to the average, adjusting bySIGMA
to normalize:\[\text{e}_i = \frac{(\max(p, p_{\text{avg}}) - \min(p, p_{\text{avg}}))^2}{\frac{\text{SIGMA}^2}{10^{18}}}\]\[\text{e}_{min} = \min(\text{e}_i, \text{max_value(uint256)})\] -
Applies an exponential decay based on these variance measures to weigh each pool's contribution to the final average price, reducing the influence of prices far from the minimum variance.
\[w = \frac{\text{D}_i * e^\left({\text{e}_i - e_{min}}\right)}{10^{18}}\] -
Sums up all
w
to store it inw_sum
and calculates the product ofw * prices[i]
, which is stored inwp_sum
. -
Finally calculates the weighted average price as
wp_sum / w_sum
, with weights adjusted for both liquidity and price variance.\[\text{final price} = \frac{\text{wp_sum}}{\text{w_sum}}\]
Prices¶
price
¶
PriceAggregator.price() -> uint256:
Function to calculate the weighted price of crvUSD.
Returns: price (uint256
).
Source code
MAX_PAIRS: constant(uint256) = 20
MIN_LIQUIDITY: constant(uint256) = 100_000 * 10**18 # Only take into account pools with enough liquidity
STABLECOIN: immutable(address)
SIGMA: immutable(uint256)
price_pairs: public(PricePair[MAX_PAIRS])
n_price_pairs: uint256
@external
@view
def price() -> uint256:
return self._price(self._ema_tvl())
@internal
@view
def _price(tvls: DynArray[uint256, MAX_PAIRS]) -> uint256:
n: uint256 = self.n_price_pairs
prices: uint256[MAX_PAIRS] = empty(uint256[MAX_PAIRS])
D: uint256[MAX_PAIRS] = empty(uint256[MAX_PAIRS])
Dsum: uint256 = 0
DPsum: uint256 = 0
for i in range(MAX_PAIRS):
if i == n:
break
price_pair: PricePair = self.price_pairs[i]
pool_supply: uint256 = tvls[i]
if pool_supply >= MIN_LIQUIDITY:
p: uint256 = price_pair.pool.price_oracle()
if price_pair.is_inverse:
p = 10**36 / p
prices[i] = p
D[i] = pool_supply
Dsum += pool_supply
DPsum += pool_supply * p
if Dsum == 0:
return 10**18 # Placeholder for no active pools
p_avg: uint256 = DPsum / Dsum
e: uint256[MAX_PAIRS] = empty(uint256[MAX_PAIRS])
e_min: uint256 = max_value(uint256)
for i in range(MAX_PAIRS):
if i == n:
break
p: uint256 = prices[i]
e[i] = (max(p, p_avg) - min(p, p_avg))**2 / (SIGMA**2 / 10**18)
e_min = min(e[i], e_min)
wp_sum: uint256 = 0
w_sum: uint256 = 0
for i in range(MAX_PAIRS):
if i == n:
break
w: uint256 = D[i] * self.exp(-convert(e[i] - e_min, int256)) / 10**18
w_sum += w
wp_sum += w * prices[i]
return wp_sum / w_sum
last_price
¶
PriceAggregator.last_price() -> uint256: view
Getter for the last price. This variable was set to \(10^{18}\) (1.00) when initializing the contract and is now updated every time price_w
is called.
Returns: last price of crvUSD (uint256
).
Source code
last_price: public(uint256)
@external
def __init__(stablecoin: address, sigma: uint256, admin: address):
STABLECOIN = stablecoin
SIGMA = sigma # The change is so rare that we can change the whole thing altogether
self.admin = admin
self.last_price = 10**18
self.last_timestamp = block.timestamp
@external
def price_w() -> uint256:
if self.last_timestamp == block.timestamp:
return self.last_price
else:
ema_tvl: DynArray[uint256, MAX_PAIRS] = self._ema_tvl()
self.last_timestamp = block.timestamp
for i in range(MAX_PAIRS):
if i == len(ema_tvl):
break
self.last_tvl[i] = ema_tvl[i]
p: uint256 = self._price(ema_tvl)
self.last_price = p
return p
ema_tvl
¶
PriceAggregator.ema_tvl() -> DynArray[uint256, MAX_PAIRS]
Getter for the exponential moving-average of the TVL in price_pairs
.
Returns: array of ema tvls (DynArray[uint256, MAX_PAIRS]
).
Source code
TVL_MA_TIME: public(constant(uint256)) = 50000 # s
last_tvl: public(uint256[MAX_PAIRS])
@external
@view
def ema_tvl() -> DynArray[uint256, MAX_PAIRS]:
return self._ema_tvl()
@internal
@view
def _ema_tvl() -> DynArray[uint256, MAX_PAIRS]:
tvls: DynArray[uint256, MAX_PAIRS] = []
last_timestamp: uint256 = self.last_timestamp
alpha: uint256 = 10**18
if last_timestamp < block.timestamp:
alpha = self.exp(- convert((block.timestamp - last_timestamp) * 10**18 / TVL_MA_TIME, int256))
n_price_pairs: uint256 = self.n_price_pairs
for i in range(MAX_PAIRS):
if i == n_price_pairs:
break
tvl: uint256 = self.last_tvl[i]
if alpha != 10**18:
# alpha = 1.0 when dt = 0
# alpha = 0.0 when dt = inf
new_tvl: uint256 = self.price_pairs[i].pool.totalSupply() # We don't do virtual price here to save on gas
tvl = (new_tvl * (10**18 - alpha) + tvl * alpha) / 10**18
tvls.append(tvl)
return tvls
last_tvl
¶
PriceAggregator.last_tvl(arg0: uint256) -> uint256:
Getter for the total value locked of price pair (pool).
Returns: total value locked (uint256
).
Input | Type | Description |
---|---|---|
arg0 | uint256 | Index of the price pair |
price_w
¶
PriceAggregator.price_w() -> uint256:
Function to calculate and write the price. If called successfully, updates last_tvl
, last_price
and last_timestamp
.
Returns: price (uint256
).
Source code
@external
def price_w() -> uint256:
if self.last_timestamp == block.timestamp:
return self.last_price
else:
ema_tvl: DynArray[uint256, MAX_PAIRS] = self._ema_tvl()
self.last_timestamp = block.timestamp
for i in range(MAX_PAIRS):
if i == len(ema_tvl):
break
self.last_tvl[i] = ema_tvl[i]
p: uint256 = self._price(ema_tvl)
self.last_price = p
return p
@internal
@view
def _price(tvls: DynArray[uint256, MAX_PAIRS]) -> uint256:
n: uint256 = self.n_price_pairs
prices: uint256[MAX_PAIRS] = empty(uint256[MAX_PAIRS])
D: uint256[MAX_PAIRS] = empty(uint256[MAX_PAIRS])
Dsum: uint256 = 0
DPsum: uint256 = 0
for i in range(MAX_PAIRS):
if i == n:
break
price_pair: PricePair = self.price_pairs[i]
pool_supply: uint256 = tvls[i]
if pool_supply >= MIN_LIQUIDITY:
p: uint256 = price_pair.pool.price_oracle()
if price_pair.is_inverse:
p = 10**36 / p
prices[i] = p
D[i] = pool_supply
Dsum += pool_supply
DPsum += pool_supply * p
if Dsum == 0:
return 10**18 # Placeholder for no active pools
p_avg: uint256 = DPsum / Dsum
e: uint256[MAX_PAIRS] = empty(uint256[MAX_PAIRS])
e_min: uint256 = max_value(uint256)
for i in range(MAX_PAIRS):
if i == n:
break
p: uint256 = prices[i]
e[i] = (max(p, p_avg) - min(p, p_avg))**2 / (SIGMA**2 / 10**18)
e_min = min(e[i], e_min)
wp_sum: uint256 = 0
w_sum: uint256 = 0
for i in range(MAX_PAIRS):
if i == n:
break
w: uint256 = D[i] * self.exp(-convert(e[i] - e_min, int256)) / 10**18
w_sum += w
wp_sum += w * prices[i]
return wp_sum / w_sum
Adding and Removing Price Pairs¶
All price pairs added to the contract are considered when calculating the price
of crvUSD. Adding or removing price pairs can only be done by the admin
of the contract, which is the Curve DAO.
price_pairs
¶
PriceAggregator.price_pairs(arg0: uint256) -> tuple: view
Getter for the price pair at index arg0
and whether the price pair is inverse.
Returns: price pair (address
) and true or false (bool
).
Input | Type | Description |
---|---|---|
arg0 | uint256 | Index of the price pair |
add_price_pair
¶
PriceAggregator.add_price_pair(_pool: Stableswap):
Guarded Method
This function is only callable by the admin
of the contract.
Function to add a price pair to the PriceAggregator.
Emits: AddPricePair
Input | Type | Description |
---|---|---|
_pool | address | Price pair to add |
Source code
event AddPricePair:
n: uint256
pool: Stableswap
is_inverse: bool
@external
def add_price_pair(_pool: Stableswap):
assert msg.sender == self.admin
price_pair: PricePair = empty(PricePair)
price_pair.pool = _pool
coins: address[2] = [_pool.coins(0), _pool.coins(1)]
if coins[0] == STABLECOIN:
price_pair.is_inverse = True
else:
assert coins[1] == STABLECOIN
n: uint256 = self.n_price_pairs
self.price_pairs[n] = price_pair # Should revert if too many pairs
self.last_tvl[n] = _pool.totalSupply()
self.n_price_pairs = n + 1
log AddPricePair(n, _pool, price_pair.is_inverse)
remove_price_pair
¶
PriceAggregator.remove_price_pair(n: uint256):
Guarded Method
This function is only callable by the admin
of the contract.
Function to remove a price pair from the contract. If a prior pool than the latest added one gets removed, the function will move the latest added price pair to the removed pair pairs index to not mess up price_pairs
.
Emits: RemovePricePair
and possibly MovePricePair
Input | Type | Description |
---|---|---|
n | uint256 | Index of the price pair to remove |
Source code
event RemovePricePair:
n: uint256
event MovePricePair:
n_from: uint256
n_to: uint256
@external
def remove_price_pair(n: uint256):
assert msg.sender == self.admin
n_max: uint256 = self.n_price_pairs - 1
assert n <= n_max
if n < n_max:
self.price_pairs[n] = self.price_pairs[n_max]
log MovePricePair(n_max, n)
self.n_price_pairs = n_max
log RemovePricePair(n)
Admin Ownership¶
admin
¶
PriceAggregator.admin() -> address: view
Getter for the admin of the contract, which is the Curve DAO OwnershipAgent.
Returns: admin (address
).
Source code
set_admin
¶
PriceAggregator.set_admin(_admin: address):
Guarded Method
This function is only callable by the admin
of the contract.
Function to set a new admin.
Emits: SetAdmin
Input | Type | Description |
---|---|---|
_admin | address | new admin address |
Source code
Contract Info Methods¶
SIGMA
¶
PriceAggregator.SIGMA() -> uint256: view
Getter for the sigma value. SIGMA is a predefined constant that influences the adjustment of price deviations, affecting how variations in individual stablecoin prices contribute to the overall average stablecoin price.
Returns: sigma (uint256
).
STABLECOIN
¶
PriceAggregator.STABLECOIN() -> address: view
Getter for the stablecoin contract address.
Returns: crvUSD contract (address
).
Source code
last_timestamp
¶
PriceAggregator.last_timestamp() -> uint256:
Getter for the latest timestamp. Variable is updated when price_w
is called.
Returns: timestamp (uint256
).