TriCrypto Pool
Tricrypto-NG pool contanins of three non-pegged assets.
Liquidity Pool (LP) Token
The LP token is directly integrated into the exchange contract. Pool and LP token share the same address.
The token has the regular ERC-20 methods, which will not be further documented.
For Tricrypto-NG pools, price scaling and fee parameters are bundled and stored as a single unsigned integer. This consolidation reduces storage read and write operations, leading to more cost-efficient calls. When these parameters are accessed, they are subsequently unpacked.
_pack()
_unpack()
@internal
@view
def _unpack(_packed: uint256) -> uint256[3]:
"""
@notice Unpacks a uint256 into 3 integers (values must be <= 10**18)
@param val The uint256 to unpack
@return uint256[3] A list of length 3 with unpacked integers
"""
return [
(_packed >> 128) & 18446744073709551615,
(_packed >> 64) & 18446744073709551615,
_packed & 18446744073709551615,
]
Exchange Methods¶
The contract offers two different ways to exchange tokens:
- A regular
exchange
method. - A
exchange_underlying
method, which swaps tokens based on native token transfers into the pool. More here.
exchange
¶
TriCrypto.exchange(i: uint256, j: uint256, dx: uint256, min_dy: uint256, receiver: address = msg.sender) -> uint256:
Function to exchange dx
amount of coin i
for coin j
and receive a minimum amount of min_dy
.
Returns: amount of output coin j
received (uint256
).
Input | Type | Description |
---|---|---|
i | uint256 | Index value for the input coin |
j | uint256 | Index value for the output coin |
dx | uint256 | Amount of input coin being swapped in |
min_dy | uint256 | Minimum amount of output coin to receive |
receiver | address | Address to send output coin to. Defaults to msg.sender |
Source code
event TokenExchange:
buyer: indexed(address)
sold_id: uint256
tokens_sold: uint256
bought_id: uint256
tokens_bought: uint256
fee: uint256
packed_price_scale: uint256
@payable
@external
@nonreentrant("lock")
def exchange(
i: uint256,
j: uint256,
dx: uint256,
min_dy: uint256,
use_eth: bool = False,
receiver: address = msg.sender
) -> uint256:
"""
@notice Exchange using wrapped native token by default
@param i Index value for the input coin
@param j Index value for the output coin
@param dx Amount of input coin being swapped in
@param min_dy Minimum amount of output coin to receive
@param use_eth True if the input coin is native token, False otherwise
@param receiver Address to send the output coin to. Default is msg.sender
@return uint256 Amount of tokens at index j received by the `receiver
"""
return self._exchange(
msg.sender,
msg.value,
i,
j,
dx,
min_dy,
use_eth,
receiver,
empty(address),
empty(bytes32)
)
@internal
def _exchange(
sender: address,
mvalue: uint256,
i: uint256,
j: uint256,
dx: uint256,
min_dy: uint256,
use_eth: bool,
receiver: address,
callbacker: address,
callback_sig: bytes32
) -> uint256:
assert i != j # dev: coin index out of range
assert dx > 0 # dev: do not exchange 0 coins
A_gamma: uint256[2] = self._A_gamma()
xp: uint256[N_COINS] = self.balances
precisions: uint256[N_COINS] = self._unpack(self.packed_precisions)
dy: uint256 = 0
y: uint256 = xp[j] # <----------------- if j > N_COINS, this will revert.
x0: uint256 = xp[i] # <--------------- if i > N_COINS, this will revert.
xp[i] = x0 + dx
self.balances[i] = xp[i]
packed_price_scale: uint256 = self.price_scale_packed
price_scale: uint256[N_COINS - 1] = self._unpack_prices(
packed_price_scale
)
xp[0] *= precisions[0]
for k in range(1, N_COINS):
xp[k] = unsafe_div(
xp[k] * price_scale[k - 1] * precisions[k],
PRECISION
) # <-------- Safu to do unsafe_div here since PRECISION is not zero.
prec_i: uint256 = precisions[i]
# ----------- Update invariant if A, gamma are undergoing ramps ---------
t: uint256 = self.future_A_gamma_time
if t > block.timestamp:
x0 *= prec_i
if i > 0:
x0 = unsafe_div(x0 * price_scale[i - 1], PRECISION)
x1: uint256 = xp[i] # <------------------ Back up old value in xp ...
xp[i] = x0 # |
self.D = MATH.newton_D(A_gamma[0], A_gamma[1], xp, 0) # |
xp[i] = x1 # <-------------------------------------- ... and restore.
# ----------------------- Calculate dy and fees --------------------------
D: uint256 = self.D
prec_j: uint256 = precisions[j]
y_out: uint256[2] = MATH.get_y(A_gamma[0], A_gamma[1], xp, D, j)
dy = xp[j] - y_out[0]
xp[j] -= dy
dy -= 1
if j > 0:
dy = dy * PRECISION / price_scale[j - 1]
dy /= prec_j
fee: uint256 = unsafe_div(self._fee(xp) * dy, 10**10)
dy -= fee # <--------------------- Subtract fee from the outgoing amount.
assert dy >= min_dy, "Slippage"
y -= dy
self.balances[j] = y # <----------- Update pool balance of outgoing coin.
y *= prec_j
if j > 0:
y = unsafe_div(y * price_scale[j - 1], PRECISION)
xp[j] = y # <------------------------------------------------- Update xp.
# ---------------------- Do Transfers in and out -------------------------
########################## TRANSFER IN <-------
self._transfer_in(
coins[i], dx, dy, mvalue,
callbacker, callback_sig, # <-------- Callback method is called here.
sender, receiver, use_eth,
)
########################## -------> TRANSFER OUT
self._transfer_out(coins[j], dy, use_eth, receiver)
# ------ Tweak price_scale with good initial guess for newton_D ----------
packed_price_scale = self.tweak_price(A_gamma, xp, 0, y_out[1])
log TokenExchange(sender, i, dx, j, dy, fee, packed_price_scale)
return dy
exchange_underlying
¶
TriCrypto.exchange_underlying(i: uint256, j: uint256, dx: uint256, min_dy: uint256, receiver: address = msg.sender) -> uint256:
Function to exchange between two underlying tokens. More here.
Returns: amount of output coin j
received (uint256
).
Emits: TokenExchange
Input | Type | Description |
---|---|---|
i | uint256 | Index value for the input coin. |
j | uint256 | Index value for the output coin. |
dx | uint256 | Amount of input coin being swapped in. |
min_dy | uint256 | Minimum amount of output coin to receive. |
receiver | address | Receiver Address; defaults to msg.sender. |
Source code
event TokenExchange:
buyer: indexed(address)
sold_id: uint256
tokens_sold: uint256
bought_id: uint256
tokens_bought: uint256
fee: uint256
packed_price_scale: uint256
@payable
@external
@nonreentrant('lock')
def exchange_underlying(
i: uint256,
j: uint256,
dx: uint256,
min_dy: uint256,
receiver: address = msg.sender
) -> uint256:
"""
@notice Exchange using native token transfers.
@param i Index value for the input coin
@param j Index value for the output coin
@param dx Amount of input coin being swapped in
@param min_dy Minimum amount of output coin to receive
@param receiver Address to send the output coin to. Default is msg.sender
@return uint256 Amount of tokens at index j received by the `receiver
"""
return self._exchange(
msg.sender,
msg.value,
i,
j,
dx,
min_dy,
True,
receiver,
empty(address),
empty(bytes32)
)
@internal
def _exchange(
sender: address,
mvalue: uint256,
i: uint256,
j: uint256,
dx: uint256,
min_dy: uint256,
use_eth: bool,
receiver: address,
callbacker: address,
callback_sig: bytes32
) -> uint256:
assert i != j # dev: coin index out of range
assert dx > 0 # dev: do not exchange 0 coins
A_gamma: uint256[2] = self._A_gamma()
xp: uint256[N_COINS] = self.balances
precisions: uint256[N_COINS] = self._unpack(self.packed_precisions)
dy: uint256 = 0
y: uint256 = xp[j] # <----------------- if j > N_COINS, this will revert.
x0: uint256 = xp[i] # <--------------- if i > N_COINS, this will revert.
xp[i] = x0 + dx
self.balances[i] = xp[i]
packed_price_scale: uint256 = self.price_scale_packed
price_scale: uint256[N_COINS - 1] = self._unpack_prices(
packed_price_scale
)
xp[0] *= precisions[0]
for k in range(1, N_COINS):
xp[k] = unsafe_div(
xp[k] * price_scale[k - 1] * precisions[k],
PRECISION
) # <-------- Safu to do unsafe_div here since PRECISION is not zero.
prec_i: uint256 = precisions[i]
# ----------- Update invariant if A, gamma are undergoing ramps ---------
t: uint256 = self.future_A_gamma_time
if t > block.timestamp:
x0 *= prec_i
if i > 0:
x0 = unsafe_div(x0 * price_scale[i - 1], PRECISION)
x1: uint256 = xp[i] # <------------------ Back up old value in xp ...
xp[i] = x0 # |
self.D = MATH.newton_D(A_gamma[0], A_gamma[1], xp, 0) # |
xp[i] = x1 # <-------------------------------------- ... and restore.
# ----------------------- Calculate dy and fees --------------------------
D: uint256 = self.D
prec_j: uint256 = precisions[j]
y_out: uint256[2] = MATH.get_y(A_gamma[0], A_gamma[1], xp, D, j)
dy = xp[j] - y_out[0]
xp[j] -= dy
dy -= 1
if j > 0:
dy = dy * PRECISION / price_scale[j - 1]
dy /= prec_j
fee: uint256 = unsafe_div(self._fee(xp) * dy, 10**10)
dy -= fee # <--------------------- Subtract fee from the outgoing amount.
assert dy >= min_dy, "Slippage"
y -= dy
self.balances[j] = y # <----------- Update pool balance of outgoing coin.
y *= prec_j
if j > 0:
y = unsafe_div(y * price_scale[j - 1], PRECISION)
xp[j] = y # <------------------------------------------------- Update xp.
# ---------------------- Do Transfers in and out -------------------------
########################## TRANSFER IN <-------
self._transfer_in(
coins[i], dx, dy, mvalue,
callbacker, callback_sig, # <-------- Callback method is called here.
sender, receiver, use_eth,
)
########################## -------> TRANSFER OUT
self._transfer_out(coins[j], dy, use_eth, receiver)
# ------ Tweak price_scale with good initial guess for newton_D ----------
packed_price_scale = self.tweak_price(A_gamma, xp, 0, y_out[1])
log TokenExchange(sender, i, dx, j, dy, fee, packed_price_scale)
return dy
get_dy
¶
TriCrypto.get_dy(i: uint256, j: uint256, dx: uint256) -> uint256:
Getter for the received amount of coin j
for swapping in dx
amount of coin i
. This method includes fees.
Returns: exact amount of output coin j
(uint256
).
Input | Type | Description |
---|---|---|
i | uint256 | Index of input token. |
j | uint256 | Index of output token. |
dx | uint256 | Amount of input tokens. |
Source code
interface Factory:
def admin() -> address: view
def fee_receiver() -> address: view
def views_implementation() -> address: view
interface Views:
def calc_token_amount(
amounts: uint256[N_COINS], deposit: bool, swap: address
) -> uint256: view
def get_dy(
i: uint256, j: uint256, dx: uint256, swap: address
) -> uint256: view
def get_dx(
i: uint256, j: uint256, dy: uint256, swap: address
) -> uint256: view
@external
@view
def get_dy(i: uint256, j: uint256, dx: uint256) -> uint256:
"""
@notice Get amount of coin[j] tokens received for swapping in dx amount of coin[i]
@dev Includes fee.
@param i index of input token. Check pool.coins(i) to get coin address at ith index
@param j index of output token
@param dx amount of input coin[i] tokens
@return uint256 Exact amount of output j tokens for dx amount of i input tokens.
"""
view_contract: address = Factory(self.factory).views_implementation()
return Views(view_contract).get_dy(i, j, dx, self)
@external
@view
def get_dy(
i: uint256, j: uint256, dx: uint256, swap: address
) -> uint256:
dy: uint256 = 0
xp: uint256[N_COINS] = empty(uint256[N_COINS])
# dy = (get_y(x + dx) - y) * (1 - fee)
dy, xp = self._get_dy_nofee(i, j, dx, swap)
dy -= Curve(swap).fee_calc(xp) * dy / 10**10
return dy
@internal
@view
def _get_dy_nofee(
i: uint256, j: uint256, dx: uint256, swap: address
) -> (uint256, uint256[N_COINS]):
assert i != j and i < N_COINS and j < N_COINS, "coin index out of range"
assert dx > 0, "do not exchange 0 coins"
math: Math = Curve(swap).MATH()
xp: uint256[N_COINS] = empty(uint256[N_COINS])
precisions: uint256[N_COINS] = empty(uint256[N_COINS])
price_scale: uint256[N_COINS-1] = empty(uint256[N_COINS-1])
D: uint256 = 0
token_supply: uint256 = 0
A: uint256 = 0
gamma: uint256 = 0
xp, D, token_supply, price_scale, A, gamma, precisions = self._prep_calc(swap)
# adjust xp with input dx
xp[i] += dx
xp[0] *= precisions[0]
for k in range(N_COINS - 1):
xp[k + 1] = xp[k + 1] * price_scale[k] * precisions[k + 1] / PRECISION
y_out: uint256[2] = math.get_y(A, gamma, xp, D, j)
dy: uint256 = xp[j] - y_out[0] - 1
xp[j] = y_out[0]
if j > 0:
dy = dy * PRECISION / price_scale[j - 1]
dy /= precisions[j]
return dy, xp
get_dx
¶
TriCrypto.get_dx(i: uint256, j: uint256, dy: uint256) -> uint256:
Getter for the required amount of coin i
to input for swapping out dy
amount of token j
.
Returns: amount of input coin i
needed (uint256
).
Input | Type | Description |
---|---|---|
i | uint256 | Index of input token. |
j | uint256 | Index of output token. |
dy | uint256 | Amount of output tokens. |
Source code
interface Factory:
def admin() -> address: view
def fee_receiver() -> address: view
def views_implementation() -> address: view
interface Views:
def calc_token_amount(
amounts: uint256[N_COINS], deposit: bool, swap: address
) -> uint256: view
def get_dy(
i: uint256, j: uint256, dx: uint256, swap: address
) -> uint256: view
def get_dx(
i: uint256, j: uint256, dy: uint256, swap: address
) -> uint256: view
@external
@view
def get_dx(i: uint256, j: uint256, dy: uint256) -> uint256:
"""
@notice Get amount of coin[i] tokens to input for swapping out dy amount
of coin[j]
@dev This is an approximate method, and returns estimates close to the input
amount. Expensive to call on-chain.
@param i index of input token. Check pool.coins(i) to get coin address at
ith index
@param j index of output token
@param dy amount of input coin[j] tokens received
@return uint256 Approximate amount of input i tokens to get dy amount of j tokens.
"""
view_contract: address = Factory(self.factory).views_implementation()
return Views(view_contract).get_dx(i, j, dy, self)
@external
@view
def fee_calc(xp: uint256[N_COINS]) -> uint256: # <----- For by view contract.
"""
@notice Returns the fee charged by the pool at current state.
@param xp The current balances of the pool multiplied by coin precisions.
@return uint256 Fee value.
"""
return self._fee(xp)
@internal
@view
def _fee(xp: uint256[N_COINS]) -> uint256:
fee_params: uint256[3] = self._unpack(self.packed_fee_params)
f: uint256 = MATH.reduction_coefficient(xp, fee_params[2])
return unsafe_div(
fee_params[0] * f + fee_params[1] * (10**18 - f),
10**18
)
@view
@external
def get_dx(
i: uint256, j: uint256, dy: uint256, swap: address
) -> uint256:
dx: uint256 = 0
xp: uint256[N_COINS] = empty(uint256[N_COINS])
fee_dy: uint256 = 0
_dy: uint256 = dy
# for more precise dx (but never exact), increase num loops
for k in range(5):
dx, xp = self._get_dx_fee(i, j, _dy, swap)
fee_dy = Curve(swap).fee_calc(xp) * _dy / 10**10
_dy = dy + fee_dy + 1
return dx
@internal
@view
def _get_dx_fee(
i: uint256, j: uint256, dy: uint256, swap: address
) -> (uint256, uint256[N_COINS]):
# here, dy must include fees (and 1 wei offset)
assert i != j and i < N_COINS and j < N_COINS, "coin index out of range"
assert dy > 0, "do not exchange out 0 coins"
math: Math = Curve(swap).MATH()
xp: uint256[N_COINS] = empty(uint256[N_COINS])
precisions: uint256[N_COINS] = empty(uint256[N_COINS])
price_scale: uint256[N_COINS-1] = empty(uint256[N_COINS-1])
D: uint256 = 0
token_supply: uint256 = 0
A: uint256 = 0
gamma: uint256 = 0
xp, D, token_supply, price_scale, A, gamma, precisions = self._prep_calc(swap)
# adjust xp with output dy. dy contains fee element, which we handle later
# (hence this internal method is called _get_dx_fee)
xp[j] -= dy
xp[0] *= precisions[0]
for k in range(N_COINS - 1):
xp[k + 1] = xp[k + 1] * price_scale[k] * precisions[k + 1] / PRECISION
x_out: uint256[2] = math.get_y(A, gamma, xp, D, i)
dx: uint256 = x_out[0] - xp[i]
xp[i] = x_out[0]
if i > 0:
dx = dx * PRECISION / price_scale[i - 1]
dx /= precisions[i]
return dx, xp
@internal
@view
def _prep_calc(swap: address) -> (
uint256[N_COINS],
uint256,
uint256,
uint256[N_COINS-1],
uint256,
uint256,
uint256[N_COINS]
):
precisions: uint256[N_COINS] = Curve(swap).precisions()
token_supply: uint256 = Curve(swap).totalSupply()
xp: uint256[N_COINS] = empty(uint256[N_COINS])
for k in range(N_COINS):
xp[k] = Curve(swap).balances(k)
price_scale: uint256[N_COINS - 1] = empty(uint256[N_COINS - 1])
for k in range(N_COINS - 1):
price_scale[k] = Curve(swap).price_scale(k)
A: uint256 = Curve(swap).A()
gamma: uint256 = Curve(swap).gamma()
D: uint256 = self._calc_D_ramp(
A, gamma, xp, precisions, price_scale, swap
)
return xp, D, token_supply, price_scale, A, gamma, precisions
@external
@view
def reduction_coefficient(x: uint256[N_COINS], fee_gamma: uint256) -> uint256:
"""
@notice Calculates the reduction coefficient for the given x and fee_gamma
@dev This method is used for calculating fees.
@param x The x values
@param fee_gamma The fee gamma value
"""
return self._reduction_coefficient(x, fee_gamma)
@internal
@pure
def _reduction_coefficient(x: uint256[N_COINS], fee_gamma: uint256) -> uint256:
# fee_gamma / (fee_gamma + (1 - K))
# where
# K = prod(x) / (sum(x) / N)**N
# (all normalized to 1e18)
S: uint256 = x[0] + x[1] + x[2]
# Could be good to pre-sort x, but it is used only for dynamic fee
K: uint256 = 10**18 * N_COINS * x[0] / S
K = unsafe_div(K * N_COINS * x[1], S) # <- unsafe div is safu.
K = unsafe_div(K * N_COINS * x[2], S)
if fee_gamma > 0:
K = fee_gamma * 10**18 / (fee_gamma + 10**18 - K)
return K
fee_calc
¶
TriCrypto.fee_calc(xp: uint256[N_COINS]) -> uint256: view
Getter for the charged exchange fee by the pool at the current state.
Returns: fee (uint256
).
Input | Type | Description |
---|---|---|
xp | uint256[N_COINS] | Pool balances multiplied by the coin precisions. |
Source code
@external
@view
def fee_calc(xp: uint256[N_COINS]) -> uint256: # <----- For by view contract.
"""
@notice Returns the fee charged by the pool at current state.
@param xp The current balances of the pool multiplied by coin precisions.
@return uint256 Fee value.
"""
return self._fee(xp)
@internal
@view
def _fee(xp: uint256[N_COINS]) -> uint256:
fee_params: uint256[3] = self._unpack(self.packed_fee_params)
f: uint256 = MATH.reduction_coefficient(xp, fee_params[2])
return unsafe_div(
fee_params[0] * f + fee_params[1] * (10**18 - f),
10**18
)
@external
@view
def reduction_coefficient(x: uint256[N_COINS], fee_gamma: uint256) -> uint256:
"""
@notice Calculates the reduction coefficient for the given x and fee_gamma
@dev This method is used for calculating fees.
@param x The x values
@param fee_gamma The fee gamma value
"""
return self._reduction_coefficient(x, fee_gamma)
@internal
@pure
def _reduction_coefficient(x: uint256[N_COINS], fee_gamma: uint256) -> uint256:
# fee_gamma / (fee_gamma + (1 - K))
# where
# K = prod(x) / (sum(x) / N)**N
# (all normalized to 1e18)
S: uint256 = x[0] + x[1] + x[2]
# Could be good to pre-sort x, but it is used only for dynamic fee
K: uint256 = 10**18 * N_COINS * x[0] / S
K = unsafe_div(K * N_COINS * x[1], S) # <- unsafe div is safu.
K = unsafe_div(K * N_COINS * x[2], S)
if fee_gamma > 0:
K = fee_gamma * 10**18 / (fee_gamma + 10**18 - K)
return K
Adding and Removing Liquidity¶
The tricrypto-ng implementation utilizes the usual methods to add and remove liquidity.
Adding liquidity can be done via the add_liquidity
method. The code uses a list of unsigned integers uint256[N_COINS]
as input for the pools underlying tokens to add. Any proportion is possible. For example, adding fully single-sided can be done using [0, 1e18]
or [1e18, 0]
, but again, any variation is possible, e.g., [1e18, 1e19]
.
Removing liquidity can be done in two different ways. Either withdraw the underlying assets in a balanced proportion using the remove_liquidity
method or fully single-sided in a single underlying token using remove_liquidity_one_coin
.
add_liquidity
¶
TriCrypto.add_liquidity(amounts: uint256[N_COINS], min_mint_amount: uint256, use_eth: bool = False, receiver: address = msg.sender) -> uint256:
Function to add liquidity to the pool and mint the corresponding LP tokens.
Returns: amount of LP tokens received (uint256
).
Emits: AddLiquidity
Input | Type | Description |
---|---|---|
amounts | uint256[N_COINS] | Amount of each coin to add. |
min_mint_amount | uint256 | Minimum amount of LP tokens to mint. |
use_eth | bool | True = native token is added to the pool. |
receiver | address | Receiver of the LP tokens; defaults to msg.sender. |
Source code
event AddLiquidity:
provider: indexed(address)
token_amounts: uint256[N_COINS]
fee: uint256
token_supply: uint256
packed_price_scale: uint256
@payable
@external
@nonreentrant("lock")
def add_liquidity(
amounts: uint256[N_COINS],
min_mint_amount: uint256,
use_eth: bool = False,
receiver: address = msg.sender
) -> uint256:
"""
@notice Adds liquidity into the pool.
@param amounts Amounts of each coin to add.
@param min_mint_amount Minimum amount of LP to mint.
@param use_eth True if native token is being added to the pool.
@param receiver Address to send the LP tokens to. Default is msg.sender
@return uint256 Amount of LP tokens received by the `receiver
"""
A_gamma: uint256[2] = self._A_gamma()
xp: uint256[N_COINS] = self.balances
amountsp: uint256[N_COINS] = empty(uint256[N_COINS])
xx: uint256[N_COINS] = empty(uint256[N_COINS])
d_token: uint256 = 0
d_token_fee: uint256 = 0
old_D: uint256 = 0
assert amounts[0] + amounts[1] + amounts[2] > 0 # dev: no coins to add
# --------------------- Get prices, balances -----------------------------
precisions: uint256[N_COINS] = self._unpack(self.packed_precisions)
packed_price_scale: uint256 = self.price_scale_packed
price_scale: uint256[N_COINS-1] = self._unpack_prices(packed_price_scale)
# -------------------------------------- Update balances and calculate xp.
xp_old: uint256[N_COINS] = xp
for i in range(N_COINS):
bal: uint256 = xp[i] + amounts[i]
xp[i] = bal
self.balances[i] = bal
xx = xp
xp[0] *= precisions[0]
xp_old[0] *= precisions[0]
for i in range(1, N_COINS):
xp[i] = unsafe_div(xp[i] * price_scale[i-1] * precisions[i], PRECISION)
xp_old[i] = unsafe_div(
xp_old[i] * unsafe_mul(price_scale[i-1], precisions[i]),
PRECISION
)
# ---------------- transferFrom token into the pool ----------------------
for i in range(N_COINS):
if amounts[i] > 0:
if coins[i] == WETH20:
self._transfer_in(
coins[i],
amounts[i],
0, # <-----------------------------------
msg.value, # | No callbacks
empty(address), # <----------------------| for
empty(bytes32), # <----------------------| add_liquidity.
msg.sender, # |
empty(address), # <-----------------------
use_eth
)
else:
self._transfer_in(
coins[i],
amounts[i],
0,
0, # <----------------- mvalue = 0 if coin is not WETH20.
empty(address),
empty(bytes32),
msg.sender,
empty(address),
False # <-------- use_eth is False if coin is not WETH20.
)
amountsp[i] = xp[i] - xp_old[i]
# -------------------- Calculate LP tokens to mint -----------------------
if self.future_A_gamma_time > block.timestamp: # <--- A_gamma is ramping.
# ----- Recalculate the invariant if A or gamma are undergoing a ramp.
old_D = MATH.newton_D(A_gamma[0], A_gamma[1], xp_old, 0)
else:
old_D = self.D
D: uint256 = MATH.newton_D(A_gamma[0], A_gamma[1], xp, 0)
token_supply: uint256 = self.totalSupply
if old_D > 0:
d_token = token_supply * D / old_D - token_supply
else:
d_token = self.get_xcp(D) # <------------------------- Making initial
# virtual price equal to 1.
assert d_token > 0 # dev: nothing minted
if old_D > 0:
d_token_fee = (
self._calc_token_fee(amountsp, xp) * d_token / 10**10 + 1
)
d_token -= d_token_fee
token_supply += d_token
self.mint(receiver, d_token)
packed_price_scale = self.tweak_price(A_gamma, xp, D, 0)
else:
self.D = D
self.virtual_price = 10**18
self.xcp_profit = 10**18
self.xcp_profit_a = 10**18
self.mint(receiver, d_token)
assert d_token >= min_mint_amount, "Slippage"
log AddLiquidity(
receiver, amounts, d_token_fee, token_supply, packed_price_scale
)
self._claim_admin_fees() # <--------------------------- Claim admin fees.
return d_token
@external
@view
def newton_D(
ANN: uint256,
gamma: uint256,
x_unsorted: uint256[N_COINS],
K0_prev: uint256 = 0,
) -> uint256:
"""
@notice Finding the invariant via newtons method using good initial guesses.
@dev ANN is higher by the factor A_MULTIPLIER
@dev ANN is already A * N**N
@param ANN the A * N**N value
@param gamma the gamma value
@param x_unsorted the array of coin balances (not sorted)
@param K0_prev apriori for newton's method derived from get_y_int. Defaults
to zero (no apriori)
"""
x: uint256[N_COINS] = self._sort(x_unsorted)
assert x[0] < max_value(uint256) / 10**18 * N_COINS**N_COINS # dev: out of limits
assert x[0] > 0 # dev: empty pool
# Safe to do unsafe add since we checked largest x's bounds previously
S: uint256 = unsafe_add(unsafe_add(x[0], x[1]), x[2])
D: uint256 = 0
if K0_prev == 0:
# Geometric mean of 3 numbers cannot be larger than the largest number
# so the following is safe to do:
D = unsafe_mul(N_COINS, self._geometric_mean(x))
else:
if S > 10**36:
D = self._cbrt(
unsafe_div(
unsafe_div(x[0] * x[1], 10**36) * x[2],
K0_prev
) * 27 * 10**12
)
elif S > 10**24:
D = self._cbrt(
unsafe_div(
unsafe_div(x[0] * x[1], 10**24) * x[2],
K0_prev
) * 27 * 10**6
)
else:
D = self._cbrt(
unsafe_div(
unsafe_div(x[0] * x[1], 10**18) * x[2],
K0_prev
) * 27
)
# D not zero here if K0_prev > 0, and we checked if x[0] is gt 0.
# initialise variables:
K0: uint256 = 0
_g1k0: uint256 = 0
mul1: uint256 = 0
mul2: uint256 = 0
neg_fprime: uint256 = 0
D_plus: uint256 = 0
D_minus: uint256 = 0
D_prev: uint256 = 0
diff: uint256 = 0
frac: uint256 = 0
for i in range(255):
D_prev = D
# K0 = 10**18 * x[0] * N_COINS / D * x[1] * N_COINS / D * x[2] * N_COINS / D
K0 = unsafe_div(
unsafe_mul(
unsafe_mul(
unsafe_div(
unsafe_mul(
unsafe_mul(
unsafe_div(
unsafe_mul(
unsafe_mul(10**18, x[0]), N_COINS
),
D,
),
x[1],
),
N_COINS,
),
D,
),
x[2],
),
N_COINS,
),
D,
) # <-------- We can convert the entire expression using unsafe math.
# since x_i is not too far from D, so overflow is not expected. Also
# D > 0, since we proved that already. unsafe_div is safe. K0 > 0
# since we can safely assume that D < 10**18 * x[0]. K0 is also
# in the range of 10**18 (it's a property).
_g1k0 = unsafe_add(gamma, 10**18) # <--------- safe to do unsafe_add.
if _g1k0 > K0: # The following operations can safely be unsafe.
_g1k0 = unsafe_add(unsafe_sub(_g1k0, K0), 1)
else:
_g1k0 = unsafe_add(unsafe_sub(K0, _g1k0), 1)
# D / (A * N**N) * _g1k0**2 / gamma**2
# mul1 = 10**18 * D / gamma * _g1k0 / gamma * _g1k0 * A_MULTIPLIER / ANN
mul1 = unsafe_div(
unsafe_mul(
unsafe_mul(
unsafe_div(
unsafe_mul(
unsafe_div(unsafe_mul(10**18, D), gamma), _g1k0
),
gamma,
),
_g1k0,
),
A_MULTIPLIER,
),
ANN,
) # <------ Since D > 0, gamma is small, _g1k0 is small, the rest are
# non-zero and small constants, and D has a cap in this method,
# we can safely convert everything to unsafe maths.
# 2*N*K0 / _g1k0
# mul2 = (2 * 10**18) * N_COINS * K0 / _g1k0
mul2 = unsafe_div(
unsafe_mul(2 * 10**18 * N_COINS, K0), _g1k0
) # <--------------- K0 is approximately around D, which has a cap of
# 10**15 * 10**18 + 1, since we get that in get_y which is called
# with newton_D. _g1k0 > 0, so the entire expression can be unsafe.
# neg_fprime: uint256 = (S + S * mul2 / 10**18) + mul1 * N_COINS / K0 - mul2 * D / 10**18
neg_fprime = unsafe_sub(
unsafe_add(
unsafe_add(S, unsafe_div(unsafe_mul(S, mul2), 10**18)),
unsafe_div(unsafe_mul(mul1, N_COINS), K0),
),
unsafe_div(unsafe_mul(mul2, D), 10**18),
) # <--- mul1 is a big number but not huge: safe to unsafely multiply
# with N_coins. neg_fprime > 0 if this expression executes.
# mul2 is in the range of 10**18, since K0 is in that range, S * mul2
# is safe. The first three sums can be done using unsafe math safely
# and since the final expression will be small since mul2 is small, we
# can safely do the entire expression unsafely.
# D -= f / fprime
# D * (neg_fprime + S) / neg_fprime
D_plus = unsafe_div(D * unsafe_add(neg_fprime, S), neg_fprime)
# D*D / neg_fprime
D_minus = unsafe_div(D * D, neg_fprime)
# Since we know K0 > 0, and neg_fprime > 0, several unsafe operations
# are possible in the following. Also, (10**18 - K0) is safe to mul.
# So the only expressions we keep safe are (D_minus + ...) and (D * ...)
if 10**18 > K0:
# D_minus += D * (mul1 / neg_fprime) / 10**18 * (10**18 - K0) / K0
D_minus += unsafe_div(
unsafe_mul(
unsafe_div(D * unsafe_div(mul1, neg_fprime), 10**18),
unsafe_sub(10**18, K0),
),
K0,
)
else:
# D_minus -= D * (mul1 / neg_fprime) / 10**18 * (K0 - 10**18) / K0
D_minus -= unsafe_div(
unsafe_mul(
unsafe_div(D * unsafe_div(mul1, neg_fprime), 10**18),
unsafe_sub(K0, 10**18),
),
K0,
)
if D_plus > D_minus:
D = unsafe_sub(D_plus, D_minus) # <--------- Safe since we check.
else:
D = unsafe_div(unsafe_sub(D_minus, D_plus), 2)
if D > D_prev:
diff = unsafe_sub(D, D_prev)
else:
diff = unsafe_sub(D_prev, D)
# Could reduce precision for gas efficiency here:
if unsafe_mul(diff, 10**14) < max(10**16, D):
# Test that we are safe with the next get_y
for _x in x:
frac = unsafe_div(unsafe_mul(_x, 10**18), D)
assert frac >= 10**16 - 1 and frac < 10**20 + 1, "Unsafe values x[i]"
return D
raise "Did not converge"
calc_token_fee
¶
TriCrypto.calc_token_fee(amounts: uint256[N_COINS], xp: uint256[N_COINS]) -> uint256:
Function to calculate the charged fee on amounts
when adding liquidity.
Returns: fee (uint256
).
Input | Type | Description |
---|---|---|
amounts | uint256[N_COINS] | Amount of coins added to the pool. |
xp | uint256[N_COINS] | Pool balances multiplied by the coin precisions. |
Source code
@external
@view
def calc_token_fee(
amounts: uint256[N_COINS], xp: uint256[N_COINS]
) -> uint256:
"""
@notice Returns the fee charged on the given amounts for add_liquidity.
@param amounts The amounts of coins being added to the pool.
@param xp The current balances of the pool multiplied by coin precisions.
@return uint256 Fee charged.
"""
return self._calc_token_fee(amounts, xp)
@view
@internal
def _calc_token_fee(amounts: uint256[N_COINS], xp: uint256[N_COINS]) -> uint256:
# fee = sum(amounts_i - avg(amounts)) * fee' / sum(amounts)
fee: uint256 = unsafe_div(
unsafe_mul(self._fee(xp), N_COINS),
unsafe_mul(4, unsafe_sub(N_COINS, 1))
)
S: uint256 = 0
for _x in amounts:
S += _x
avg: uint256 = unsafe_div(S, N_COINS)
Sdiff: uint256 = 0
for _x in amounts:
if _x > avg:
Sdiff += unsafe_sub(_x, avg)
else:
Sdiff += unsafe_sub(avg, _x)
return fee * Sdiff / S + NOISE_FEE
remove_liquidity
¶
TriCrypto.remove_liquidity(_amount: uint256, min_amounts: uint256[N_COINS], use_eth: bool = False, receiver: address = msg.sender, claim_admin_fees: bool = True) -> uint256[N_COINS]:
Function to remove liquidity from the pool and burn the LP tokens. When removing liquidity with this function, no fees are charged as the coins are withdrawn in balanced proportions.
If admin fees are claimed, they are claimed before withdrawing liquidity, ensuring the DAO gets paid first.
Returns: withdrawn balances (uint256[N_COINS]
).
Emits: RemoveLiquidity
Input | Type | Description |
---|---|---|
_amount | uint256 | Amount of LP tokens to burn. |
min_amounts | uint256[N_COINS] | Minimum amounts of tokens to withdraw. |
use_eth | bool | True = withdraw ETH, False = withdraw wETH. |
receiver | address | Receiver of the coins; defaults to msg.sender . |
claim_admin_fees | bool | Whether to claim admin fees; defaults to True . |
Source code
event RemoveLiquidity:
provider: indexed(address)
token_amounts: uint256[N_COINS]
token_supply: uint256
@external
@nonreentrant("lock")
def remove_liquidity(
_amount: uint256,
min_amounts: uint256[N_COINS],
use_eth: bool = False,
receiver: address = msg.sender,
claim_admin_fees: bool = True,
) -> uint256[N_COINS]:
"""
@notice This withdrawal method is very safe, does no complex math since
tokens are withdrawn in balanced proportions. No fees are charged.
@param _amount Amount of LP tokens to burn
@param min_amounts Minimum amounts of tokens to withdraw
@param use_eth Whether to withdraw ETH or not
@param receiver Address to send the withdrawn tokens to
@param claim_admin_fees If True, call self._claim_admin_fees(). Default is True.
@return uint256[3] Amount of pool tokens received by the `receiver`
"""
amount: uint256 = _amount
balances: uint256[N_COINS] = self.balances
d_balances: uint256[N_COINS] = empty(uint256[N_COINS])
if claim_admin_fees:
self._claim_admin_fees() # <------ We claim fees so that the DAO gets
# paid before withdrawal. In emergency cases, set it to False.
# -------------------------------------------------------- Burn LP tokens.
total_supply: uint256 = self.totalSupply # <------ Get totalSupply before
self.burnFrom(msg.sender, _amount) # ---- reducing it with self.burnFrom.
# There are two cases for withdrawing tokens from the pool.
# Case 1. Withdrawal does not empty the pool.
# In this situation, D is adjusted proportional to the amount of
# LP tokens burnt. ERC20 tokens transferred is proportional
# to : (AMM balance * LP tokens in) / LP token total supply
# Case 2. Withdrawal empties the pool.
# In this situation, all tokens are withdrawn and the invariant
# is reset.
if amount == total_supply: # <----------------------------------- Case 2.
for i in range(N_COINS):
d_balances[i] = balances[i]
self.balances[i] = 0 # <------------------------- Empty the pool.
else: # <-------------------------------------------------------- Case 1.
amount -= 1 # <---- To prevent rounding errors, favor LPs a tiny bit.
for i in range(N_COINS):
d_balances[i] = balances[i] * amount / total_supply
assert d_balances[i] >= min_amounts[i]
self.balances[i] = balances[i] - d_balances[i]
balances[i] = d_balances[i] # <-- Now it's the amounts going out.
D: uint256 = self.D
self.D = D - unsafe_div(D * amount, total_supply) # <----------- Reduce D
# proportional to the amount of tokens leaving. Since withdrawals are
# balanced, this is a simple subtraction. If amount == total_supply,
# D will be 0.
# ---------------------------------- Transfers ---------------------------
for i in range(N_COINS):
self._transfer_out(coins[i], d_balances[i], use_eth, receiver)
log RemoveLiquidity(msg.sender, balances, total_supply - _amount)
return d_balances
remove_liquidity_one_coin
¶
TriCrypto.remove_liquidity_one_coin(token_amount: uint256, i: uint256, min_amount: uint256, use_eth: bool = False, receiver: address = msg.sender) -> uint256:
Function to burn token_amount
LP tokens and withdraw liquidity in a single token i
.
Returns: amount of coins withdrawn (uint256
).
Emits: RemoveLiquidityOne
Input | Type | Description |
---|---|---|
token_amount | uint256 | Amount of LP tokens to burn. |
i | uint256 | Index of the token to withdraw. |
min_amount | uint256 | Minimum amount of token to withdraw. |
use_eth | bool | True = withdraw ETH, False = withdraw wETH. |
receiver | address | Receiver of the coins; defaults to msg.sender . |
Source code
@external
@nonreentrant("lock")
def remove_liquidity_one_coin(
token_amount: uint256,
i: uint256,
min_amount: uint256,
use_eth: bool = False,
receiver: address = msg.sender
) -> uint256:
"""
@notice Withdraw liquidity in a single token.
Involves fees (lower than swap fees).
@dev This operation also involves an admin fee claim.
@param token_amount Amount of LP tokens to burn
@param i Index of the token to withdraw
@param min_amount Minimum amount of token to withdraw.
@param use_eth Whether to withdraw ETH or not
@param receiver Address to send the withdrawn tokens to
@return Amount of tokens at index i received by the `receiver`
"""
A_gamma: uint256[2] = self._A_gamma()
dy: uint256 = 0
D: uint256 = 0
p: uint256 = 0
xp: uint256[N_COINS] = empty(uint256[N_COINS])
approx_fee: uint256 = 0
# ---------------------------- Claim admin fees before removing liquidity.
self._claim_admin_fees()
# ------------------------------------------------------------------------
dy, D, xp, approx_fee = self._calc_withdraw_one_coin(
A_gamma,
token_amount,
i,
(self.future_A_gamma_time > block.timestamp), # <------- During ramps
) # we need to update D.
assert dy >= min_amount, "Slippage"
# ------------------------- Transfers ------------------------------------
self.balances[i] -= dy
self.burnFrom(msg.sender, token_amount)
self._transfer_out(coins[i], dy, use_eth, receiver)
packed_price_scale: uint256 = self.tweak_price(A_gamma, xp, D, 0)
# Safe to use D from _calc_withdraw_one_coin here ---^
log RemoveLiquidityOne(
msg.sender, token_amount, i, dy, approx_fee, packed_price_scale
)
return dy
@internal
@view
def _calc_withdraw_one_coin(
A_gamma: uint256[2],
token_amount: uint256,
i: uint256,
update_D: bool,
) -> (uint256, uint256, uint256[N_COINS], uint256):
token_supply: uint256 = self.totalSupply
assert token_amount <= token_supply # dev: token amount more than supply
assert i < N_COINS # dev: coin out of range
xx: uint256[N_COINS] = self.balances
precisions: uint256[N_COINS] = self._unpack(self.packed_precisions)
xp: uint256[N_COINS] = precisions
D0: uint256 = 0
# -------------------------- Calculate D0 and xp -------------------------
price_scale_i: uint256 = PRECISION * precisions[0]
packed_prices: uint256 = self.price_scale_packed
xp[0] *= xx[0]
for k in range(1, N_COINS):
p: uint256 = (packed_prices & PRICE_MASK)
if i == k:
price_scale_i = p * xp[i]
xp[k] = unsafe_div(xp[k] * xx[k] * p, PRECISION)
packed_prices = packed_prices >> PRICE_SIZE
if update_D: # <-------------- D is updated if pool is undergoing a ramp.
D0 = MATH.newton_D(A_gamma[0], A_gamma[1], xp, 0)
else:
D0 = self.D
D: uint256 = D0
# -------------------------------- Fee Calc ------------------------------
# Charge fees on D. Roughly calculate xp[i] after withdrawal and use that
# to calculate fee. Precision is not paramount here: we just want a
# behavior where the higher the imbalance caused the more fee the AMM
# charges.
# xp is adjusted assuming xp[0] ~= xp[1] ~= x[2], which is usually not the
# case. We charge self._fee(xp), where xp is an imprecise adjustment post
# withdrawal in one coin. If the withdraw is too large: charge max fee by
# default. This is because the fee calculation will otherwise underflow.
xp_imprecise: uint256[N_COINS] = xp
xp_correction: uint256 = xp[i] * N_COINS * token_amount / token_supply
fee: uint256 = self._unpack(self.packed_fee_params)[1] # <- self.out_fee.
if xp_correction < xp_imprecise[i]:
xp_imprecise[i] -= xp_correction
fee = self._fee(xp_imprecise)
dD: uint256 = unsafe_div(token_amount * D, token_supply)
D_fee: uint256 = fee * dD / (2 * 10**10) + 1 # <------- Actual fee on D.
# --------- Calculate `approx_fee` (assuming balanced state) in ith token.
# -------------------------------- We only need this for fee in the event.
approx_fee: uint256 = N_COINS * D_fee * xx[i] / D
# ------------------------------------------------------------------------
D -= (dD - D_fee) # <----------------------------------- Charge fee on D.
# --------------------------------- Calculate `y_out`` with `(D - D_fee)`.
y: uint256 = MATH.get_y(A_gamma[0], A_gamma[1], xp, D, i)[0]
dy: uint256 = (xp[i] - y) * PRECISION / price_scale_i
xp[i] = y
return dy, D, xp, approx_fee
@external
@view
def newton_D(
ANN: uint256,
gamma: uint256,
x_unsorted: uint256[N_COINS],
K0_prev: uint256 = 0,
) -> uint256:
"""
@notice Finding the invariant via newtons method using good initial guesses.
@dev ANN is higher by the factor A_MULTIPLIER
@dev ANN is already A * N**N
@param ANN the A * N**N value
@param gamma the gamma value
@param x_unsorted the array of coin balances (not sorted)
@param K0_prev apriori for newton's method derived from get_y_int. Defaults
to zero (no apriori)
"""
x: uint256[N_COINS] = self._sort(x_unsorted)
assert x[0] < max_value(uint256) / 10**18 * N_COINS**N_COINS # dev: out of limits
assert x[0] > 0 # dev: empty pool
# Safe to do unsafe add since we checked largest x's bounds previously
S: uint256 = unsafe_add(unsafe_add(x[0], x[1]), x[2])
D: uint256 = 0
if K0_prev == 0:
# Geometric mean of 3 numbers cannot be larger than the largest number
# so the following is safe to do:
D = unsafe_mul(N_COINS, self._geometric_mean(x))
else:
if S > 10**36:
D = self._cbrt(
unsafe_div(
unsafe_div(x[0] * x[1], 10**36) * x[2],
K0_prev
) * 27 * 10**12
)
elif S > 10**24:
D = self._cbrt(
unsafe_div(
unsafe_div(x[0] * x[1], 10**24) * x[2],
K0_prev
) * 27 * 10**6
)
else:
D = self._cbrt(
unsafe_div(
unsafe_div(x[0] * x[1], 10**18) * x[2],
K0_prev
) * 27
)
# D not zero here if K0_prev > 0, and we checked if x[0] is gt 0.
# initialise variables:
K0: uint256 = 0
_g1k0: uint256 = 0
mul1: uint256 = 0
mul2: uint256 = 0
neg_fprime: uint256 = 0
D_plus: uint256 = 0
D_minus: uint256 = 0
D_prev: uint256 = 0
diff: uint256 = 0
frac: uint256 = 0
for i in range(255):
D_prev = D
# K0 = 10**18 * x[0] * N_COINS / D * x[1] * N_COINS / D * x[2] * N_COINS / D
K0 = unsafe_div(
unsafe_mul(
unsafe_mul(
unsafe_div(
unsafe_mul(
unsafe_mul(
unsafe_div(
unsafe_mul(
unsafe_mul(10**18, x[0]), N_COINS
),
D,
),
x[1],
),
N_COINS,
),
D,
),
x[2],
),
N_COINS,
),
D,
) # <-------- We can convert the entire expression using unsafe math.
# since x_i is not too far from D, so overflow is not expected. Also
# D > 0, since we proved that already. unsafe_div is safe. K0 > 0
# since we can safely assume that D < 10**18 * x[0]. K0 is also
# in the range of 10**18 (it's a property).
_g1k0 = unsafe_add(gamma, 10**18) # <--------- safe to do unsafe_add.
if _g1k0 > K0: # The following operations can safely be unsafe.
_g1k0 = unsafe_add(unsafe_sub(_g1k0, K0), 1)
else:
_g1k0 = unsafe_add(unsafe_sub(K0, _g1k0), 1)
# D / (A * N**N) * _g1k0**2 / gamma**2
# mul1 = 10**18 * D / gamma * _g1k0 / gamma * _g1k0 * A_MULTIPLIER / ANN
mul1 = unsafe_div(
unsafe_mul(
unsafe_mul(
unsafe_div(
unsafe_mul(
unsafe_div(unsafe_mul(10**18, D), gamma), _g1k0
),
gamma,
),
_g1k0,
),
A_MULTIPLIER,
),
ANN,
) # <------ Since D > 0, gamma is small, _g1k0 is small, the rest are
# non-zero and small constants, and D has a cap in this method,
# we can safely convert everything to unsafe maths.
# 2*N*K0 / _g1k0
# mul2 = (2 * 10**18) * N_COINS * K0 / _g1k0
mul2 = unsafe_div(
unsafe_mul(2 * 10**18 * N_COINS, K0), _g1k0
) # <--------------- K0 is approximately around D, which has a cap of
# 10**15 * 10**18 + 1, since we get that in get_y which is called
# with newton_D. _g1k0 > 0, so the entire expression can be unsafe.
# neg_fprime: uint256 = (S + S * mul2 / 10**18) + mul1 * N_COINS / K0 - mul2 * D / 10**18
neg_fprime = unsafe_sub(
unsafe_add(
unsafe_add(S, unsafe_div(unsafe_mul(S, mul2), 10**18)),
unsafe_div(unsafe_mul(mul1, N_COINS), K0),
),
unsafe_div(unsafe_mul(mul2, D), 10**18),
) # <--- mul1 is a big number but not huge: safe to unsafely multiply
# with N_coins. neg_fprime > 0 if this expression executes.
# mul2 is in the range of 10**18, since K0 is in that range, S * mul2
# is safe. The first three sums can be done using unsafe math safely
# and since the final expression will be small since mul2 is small, we
# can safely do the entire expression unsafely.
# D -= f / fprime
# D * (neg_fprime + S) / neg_fprime
D_plus = unsafe_div(D * unsafe_add(neg_fprime, S), neg_fprime)
# D*D / neg_fprime
D_minus = unsafe_div(D * D, neg_fprime)
# Since we know K0 > 0, and neg_fprime > 0, several unsafe operations
# are possible in the following. Also, (10**18 - K0) is safe to mul.
# So the only expressions we keep safe are (D_minus + ...) and (D * ...)
if 10**18 > K0:
# D_minus += D * (mul1 / neg_fprime) / 10**18 * (10**18 - K0) / K0
D_minus += unsafe_div(
unsafe_mul(
unsafe_div(D * unsafe_div(mul1, neg_fprime), 10**18),
unsafe_sub(10**18, K0),
),
K0,
)
else:
# D_minus -= D * (mul1 / neg_fprime) / 10**18 * (K0 - 10**18) / K0
D_minus -= unsafe_div(
unsafe_mul(
unsafe_div(D * unsafe_div(mul1, neg_fprime), 10**18),
unsafe_sub(K0, 10**18),
),
K0,
)
if D_plus > D_minus:
D = unsafe_sub(D_plus, D_minus) # <--------- Safe since we check.
else:
D = unsafe_div(unsafe_sub(D_minus, D_plus), 2)
if D > D_prev:
diff = unsafe_sub(D, D_prev)
else:
diff = unsafe_sub(D_prev, D)
# Could reduce precision for gas efficiency here:
if unsafe_mul(diff, 10**14) < max(10**16, D):
# Test that we are safe with the next get_y
for _x in x:
frac = unsafe_div(unsafe_mul(_x, 10**18), D)
assert frac >= 10**16 - 1 and frac < 10**20 + 1, "Unsafe values x[i]"
return D
raise "Did not converge"
@external
@view
def get_y(
_ANN: uint256, _gamma: uint256, x: uint256[N_COINS], _D: uint256, i: uint256
) -> uint256[2]:
"""
@notice Calculate x[i] given other balances x[0..N_COINS-1] and invariant D.
@dev ANN = A * N**N.
@param _ANN AMM.A() value.
@param _gamma AMM.gamma() value.
@param x Balances multiplied by prices and precisions of all coins.
@param _D Invariant.
@param i Index of coin to calculate y.
"""
# Safety checks
assert _ANN > MIN_A - 1 and _ANN < MAX_A + 1 # dev: unsafe values A
assert _gamma > MIN_GAMMA - 1 and _gamma < MAX_GAMMA + 1 # dev: unsafe values gamma
assert _D > 10**17 - 1 and _D < 10**15 * 10**18 + 1 # dev: unsafe values D
frac: uint256 = 0
for k in range(3):
if k != i:
frac = x[k] * 10**18 / _D
assert frac > 10**16 - 1 and frac < 10**20 + 1, "Unsafe values x[i]"
# if above conditions are met, x[k] > 0
j: uint256 = 0
k: uint256 = 0
if i == 0:
j = 1
k = 2
elif i == 1:
j = 0
k = 2
elif i == 2:
j = 0
k = 1
ANN: int256 = convert(_ANN, int256)
gamma: int256 = convert(_gamma, int256)
D: int256 = convert(_D, int256)
x_j: int256 = convert(x[j], int256)
x_k: int256 = convert(x[k], int256)
gamma2: int256 = unsafe_mul(gamma, gamma)
a: int256 = 10**36 / 27
# 10**36/9 + 2*10**18*gamma/27 - D**2/x_j*gamma**2*ANN/27**2/convert(A_MULTIPLIER, int256)/x_k
b: int256 = (
unsafe_add(
10**36 / 9,
unsafe_div(unsafe_mul(2 * 10**18, gamma), 27)
)
- unsafe_div(
unsafe_div(
unsafe_div(
unsafe_mul(
unsafe_div(unsafe_mul(D, D), x_j),
gamma2
) * ANN,
27**2
),
convert(A_MULTIPLIER, int256)
),
x_k,
)
) # <------- The first two expressions can be unsafe, and unsafely added.
# 10**36/9 + gamma*(gamma + 4*10**18)/27 + gamma**2*(x_j+x_k-D)/D*ANN/27/convert(A_MULTIPLIER, int256)
c: int256 = (
unsafe_add(
10**36 / 9,
unsafe_div(unsafe_mul(gamma, unsafe_add(gamma, 4 * 10**18)), 27)
)
+ unsafe_div(
unsafe_div(
unsafe_mul(
unsafe_div(gamma2 * unsafe_sub(unsafe_add(x_j, x_k), D), D),
ANN
),
27
),
convert(A_MULTIPLIER, int256),
)
) # <--------- Same as above with the first two expressions. In the third
# expression, x_j + x_k will not overflow since we know their range from
# previous assert statements.
# (10**18 + gamma)**2/27
d: int256 = unsafe_div(unsafe_add(10**18, gamma)**2, 27)
# abs(3*a*c/b - b)
d0: int256 = abs(unsafe_mul(3, a) * c / b - b) # <------------ a is smol.
divider: int256 = 0
if d0 > 10**48:
divider = 10**30
elif d0 > 10**44:
divider = 10**26
elif d0 > 10**40:
divider = 10**22
elif d0 > 10**36:
divider = 10**18
elif d0 > 10**32:
divider = 10**14
elif d0 > 10**28:
divider = 10**10
elif d0 > 10**24:
divider = 10**6
elif d0 > 10**20:
divider = 10**2
else:
divider = 1
additional_prec: int256 = 0
if abs(a) > abs(b):
additional_prec = abs(unsafe_div(a, b))
a = unsafe_div(unsafe_mul(a, additional_prec), divider)
b = unsafe_div(b * additional_prec, divider)
c = unsafe_div(c * additional_prec, divider)
d = unsafe_div(d * additional_prec, divider)
else:
additional_prec = abs(unsafe_div(b, a))
a = unsafe_div(a / additional_prec, divider)
b = unsafe_div(unsafe_div(b, additional_prec), divider)
c = unsafe_div(unsafe_div(c, additional_prec), divider)
d = unsafe_div(unsafe_div(d, additional_prec), divider)
# 3*a*c/b - b
_3ac: int256 = unsafe_mul(3, a) * c
delta0: int256 = unsafe_div(_3ac, b) - b
# 9*a*c/b - 2*b - 27*a**2/b*d/b
delta1: int256 = (
unsafe_div(3 * _3ac, b)
- unsafe_mul(2, b)
- unsafe_div(unsafe_div(27 * a**2, b) * d, b)
)
# delta1**2 + 4*delta0**2/b*delta0
sqrt_arg: int256 = (
delta1**2 +
unsafe_div(4 * delta0**2, b) * delta0
)
sqrt_val: int256 = 0
if sqrt_arg > 0:
sqrt_val = convert(isqrt(convert(sqrt_arg, uint256)), int256)
else:
return [self._newton_y(_ANN, _gamma, x, _D, i), 0]
b_cbrt: int256 = 0
if b >= 0:
b_cbrt = convert(self._cbrt(convert(b, uint256)), int256)
else:
b_cbrt = -convert(self._cbrt(convert(-b, uint256)), int256)
second_cbrt: int256 = 0
if delta1 > 0:
# convert(self._cbrt(convert((delta1 + sqrt_val), uint256)/2), int256)
second_cbrt = convert(
self._cbrt(unsafe_div(convert(delta1 + sqrt_val, uint256), 2)),
int256
)
else:
second_cbrt = -convert(
self._cbrt(unsafe_div(convert(-(delta1 - sqrt_val), uint256), 2)),
int256
)
# b_cbrt*b_cbrt/10**18*second_cbrt/10**18
C1: int256 = unsafe_div(
unsafe_div(b_cbrt * b_cbrt, 10**18) * second_cbrt,
10**18
)
# (b + b*delta0/C1 - C1)/3
root_K0: int256 = unsafe_div(b + b * delta0 / C1 - C1, 3)
# D*D/27/x_k*D/x_j*root_K0/a
root: int256 = unsafe_div(
unsafe_div(
unsafe_div(unsafe_div(D * D, 27), x_k) * D,
x_j
) * root_K0,
a
)
out: uint256[2] = [
convert(root, uint256),
convert(unsafe_div(10**18 * root_K0, a), uint256)
]
frac = unsafe_div(out[0] * 10**18, _D)
assert frac >= 10**16 - 1 and frac < 10**20 + 1, "Unsafe value for y"
# due to precision issues, get_y can be off by 2 wei or so wrt _newton_y
return out
calc_token_amount
¶
TriCrypto.def calc_token_amount(amounts: uint256[N_COINS], deposit: bool) -> uint256:
Function to calculate the LP tokens to be minted or burned for depositing or removing amounts
of coins. This method takes fees into consideration.
Returns: amount of LP tokens deposited or withdrawn (uint256
).
Input | Type | Description |
---|---|---|
amounts | uint256[N_COINS] | Amounts of tokens being deposited or withdrawn. |
deposit | bool | true for deposit, false for withdrawal. |
Source code
interface Factory:
def admin() -> address: view
def fee_receiver() -> address: view
def views_implementation() -> address: view
interface Views:
def calc_token_amount(
amounts: uint256[N_COINS], deposit: bool, swap: address
) -> uint256: view
def get_dy(
i: uint256, j: uint256, dx: uint256, swap: address
) -> uint256: view
def get_dx(
i: uint256, j: uint256, dy: uint256, swap: address
) -> uint256: view
@external
@view
def calc_token_amount(amounts: uint256[N_COINS], deposit: bool) -> uint256:
"""
@notice Calculate LP tokens minted or to be burned for depositing or
removing `amounts` of coins
@dev Includes fee.
@param amounts Amounts of tokens being deposited or withdrawn
@param deposit True if it is a deposit action, False if withdrawn.
@return uint256 Amount of LP tokens deposited or withdrawn.
"""
view_contract: address = Factory(self.factory).views_implementation()
return Views(view_contract).calc_token_amount(amounts, deposit, self)
@external
@view
def calc_token_fee(
amounts: uint256[N_COINS], xp: uint256[N_COINS]
) -> uint256:
"""
@notice Returns the fee charged on the given amounts for add_liquidity.
@param amounts The amounts of coins being added to the pool.
@param xp The current balances of the pool multiplied by coin precisions.
@return uint256 Fee charged.
"""
return self._calc_token_fee(amounts, xp)
@view
@internal
def _calc_token_fee(amounts: uint256[N_COINS], xp: uint256[N_COINS]) -> uint256:
# fee = sum(amounts_i - avg(amounts)) * fee' / sum(amounts)
fee: uint256 = unsafe_div(
unsafe_mul(self._fee(xp), N_COINS),
unsafe_mul(4, unsafe_sub(N_COINS, 1))
)
S: uint256 = 0
for _x in amounts:
S += _x
avg: uint256 = unsafe_div(S, N_COINS)
Sdiff: uint256 = 0
for _x in amounts:
if _x > avg:
Sdiff += unsafe_sub(_x, avg)
else:
Sdiff += unsafe_sub(avg, _x)
return fee * Sdiff / S + NOISE_FEE
@view
@external
def calc_token_amount(
amounts: uint256[N_COINS], deposit: bool, swap: address
) -> uint256:
d_token: uint256 = 0
amountsp: uint256[N_COINS] = empty(uint256[N_COINS])
xp: uint256[N_COINS] = empty(uint256[N_COINS])
d_token, amountsp, xp = self._calc_dtoken_nofee(amounts, deposit, swap)
d_token -= (
Curve(swap).calc_token_fee(amountsp, xp) * d_token / 10**10 + 1
)
return d_token
@view
@external
def calc_fee_token_amount(
amounts: uint256[N_COINS], deposit: bool, swap: address
) -> uint256:
d_token: uint256 = 0
amountsp: uint256[N_COINS] = empty(uint256[N_COINS])
xp: uint256[N_COINS] = empty(uint256[N_COINS])
d_token, amountsp, xp = self._calc_dtoken_nofee(amounts, deposit, swap)
return Curve(swap).calc_token_fee(amountsp, xp) * d_token / 10**10 + 1
calc_withdraw_one_coin
¶
TriCrypto.calc_withdraw_one_coin(token_amount: uint256, i: uint256) -> uint256:
Function to calculate the amount of output token i
when burning token_amount
of LP tokens. This method takes fees into consideration.
Returns: amount of tokens to receive (uint256
).
Input | Type | Description |
---|---|---|
token_amount | uint256 | Amount of LP tokens burned. |
i | uint256 | Index of the coin to withdraw. |
Source code
@view
@external
def calc_withdraw_one_coin(token_amount: uint256, i: uint256) -> uint256:
"""
@notice Calculates output tokens with fee
@param token_amount LP Token amount to burn
@param i token in which liquidity is withdrawn
@return uint256 Amount of ith tokens received for burning token_amount LP tokens.
"""
return self._calc_withdraw_one_coin(
self._A_gamma(),
token_amount,
i,
(self.future_A_gamma_time > block.timestamp)
)[0]
@internal
@view
def _calc_withdraw_one_coin(
A_gamma: uint256[2],
token_amount: uint256,
i: uint256,
update_D: bool,
) -> (uint256, uint256, uint256[N_COINS], uint256):
token_supply: uint256 = self.totalSupply
assert token_amount <= token_supply # dev: token amount more than supply
assert i < N_COINS # dev: coin out of range
xx: uint256[N_COINS] = self.balances
precisions: uint256[N_COINS] = self._unpack(self.packed_precisions)
xp: uint256[N_COINS] = precisions
D0: uint256 = 0
# -------------------------- Calculate D0 and xp -------------------------
price_scale_i: uint256 = PRECISION * precisions[0]
packed_prices: uint256 = self.price_scale_packed
xp[0] *= xx[0]
for k in range(1, N_COINS):
p: uint256 = (packed_prices & PRICE_MASK)
if i == k:
price_scale_i = p * xp[i]
xp[k] = unsafe_div(xp[k] * xx[k] * p, PRECISION)
packed_prices = packed_prices >> PRICE_SIZE
if update_D: # <-------------- D is updated if pool is undergoing a ramp.
D0 = MATH.newton_D(A_gamma[0], A_gamma[1], xp, 0)
else:
D0 = self.D
D: uint256 = D0
# -------------------------------- Fee Calc ------------------------------
# Charge fees on D. Roughly calculate xp[i] after withdrawal and use that
# to calculate fee. Precision is not paramount here: we just want a
# behavior where the higher the imbalance caused the more fee the AMM
# charges.
# xp is adjusted assuming xp[0] ~= xp[1] ~= x[2], which is usually not the
# case. We charge self._fee(xp), where xp is an imprecise adjustment post
# withdrawal in one coin. If the withdraw is too large: charge max fee by
# default. This is because the fee calculation will otherwise underflow.
xp_imprecise: uint256[N_COINS] = xp
xp_correction: uint256 = xp[i] * N_COINS * token_amount / token_supply
fee: uint256 = self._unpack(self.packed_fee_params)[1] # <- self.out_fee.
if xp_correction < xp_imprecise[i]:
xp_imprecise[i] -= xp_correction
fee = self._fee(xp_imprecise)
dD: uint256 = unsafe_div(token_amount * D, token_supply)
D_fee: uint256 = fee * dD / (2 * 10**10) + 1 # <------- Actual fee on D.
# --------- Calculate `approx_fee` (assuming balanced state) in ith token.
# -------------------------------- We only need this for fee in the event.
approx_fee: uint256 = N_COINS * D_fee * xx[i] / D
# ------------------------------------------------------------------------
D -= (dD - D_fee) # <----------------------------------- Charge fee on D.
# --------------------------------- Calculate `y_out`` with `(D - D_fee)`.
y: uint256 = MATH.get_y(A_gamma[0], A_gamma[1], xp, D, i)[0]
dy: uint256 = (xp[i] - y) * PRECISION / price_scale_i
xp[i] = y
return dy, D, xp, approx_fee
@external
@view
def newton_D(
ANN: uint256,
gamma: uint256,
x_unsorted: uint256[N_COINS],
K0_prev: uint256 = 0,
) -> uint256:
"""
@notice Finding the invariant via newtons method using good initial guesses.
@dev ANN is higher by the factor A_MULTIPLIER
@dev ANN is already A * N**N
@param ANN the A * N**N value
@param gamma the gamma value
@param x_unsorted the array of coin balances (not sorted)
@param K0_prev apriori for newton's method derived from get_y_int. Defaults
to zero (no apriori)
"""
x: uint256[N_COINS] = self._sort(x_unsorted)
assert x[0] < max_value(uint256) / 10**18 * N_COINS**N_COINS # dev: out of limits
assert x[0] > 0 # dev: empty pool
# Safe to do unsafe add since we checked largest x's bounds previously
S: uint256 = unsafe_add(unsafe_add(x[0], x[1]), x[2])
D: uint256 = 0
if K0_prev == 0:
# Geometric mean of 3 numbers cannot be larger than the largest number
# so the following is safe to do:
D = unsafe_mul(N_COINS, self._geometric_mean(x))
else:
if S > 10**36:
D = self._cbrt(
unsafe_div(
unsafe_div(x[0] * x[1], 10**36) * x[2],
K0_prev
) * 27 * 10**12
)
elif S > 10**24:
D = self._cbrt(
unsafe_div(
unsafe_div(x[0] * x[1], 10**24) * x[2],
K0_prev
) * 27 * 10**6
)
else:
D = self._cbrt(
unsafe_div(
unsafe_div(x[0] * x[1], 10**18) * x[2],
K0_prev
) * 27
)
# D not zero here if K0_prev > 0, and we checked if x[0] is gt 0.
# initialise variables:
K0: uint256 = 0
_g1k0: uint256 = 0
mul1: uint256 = 0
mul2: uint256 = 0
neg_fprime: uint256 = 0
D_plus: uint256 = 0
D_minus: uint256 = 0
D_prev: uint256 = 0
diff: uint256 = 0
frac: uint256 = 0
for i in range(255):
D_prev = D
# K0 = 10**18 * x[0] * N_COINS / D * x[1] * N_COINS / D * x[2] * N_COINS / D
K0 = unsafe_div(
unsafe_mul(
unsafe_mul(
unsafe_div(
unsafe_mul(
unsafe_mul(
unsafe_div(
unsafe_mul(
unsafe_mul(10**18, x[0]), N_COINS
),
D,
),
x[1],
),
N_COINS,
),
D,
),
x[2],
),
N_COINS,
),
D,
) # <-------- We can convert the entire expression using unsafe math.
# since x_i is not too far from D, so overflow is not expected. Also
# D > 0, since we proved that already. unsafe_div is safe. K0 > 0
# since we can safely assume that D < 10**18 * x[0]. K0 is also
# in the range of 10**18 (it's a property).
_g1k0 = unsafe_add(gamma, 10**18) # <--------- safe to do unsafe_add.
if _g1k0 > K0: # The following operations can safely be unsafe.
_g1k0 = unsafe_add(unsafe_sub(_g1k0, K0), 1)
else:
_g1k0 = unsafe_add(unsafe_sub(K0, _g1k0), 1)
# D / (A * N**N) * _g1k0**2 / gamma**2
# mul1 = 10**18 * D / gamma * _g1k0 / gamma * _g1k0 * A_MULTIPLIER / ANN
mul1 = unsafe_div(
unsafe_mul(
unsafe_mul(
unsafe_div(
unsafe_mul(
unsafe_div(unsafe_mul(10**18, D), gamma), _g1k0
),
gamma,
),
_g1k0,
),
A_MULTIPLIER,
),
ANN,
) # <------ Since D > 0, gamma is small, _g1k0 is small, the rest are
# non-zero and small constants, and D has a cap in this method,
# we can safely convert everything to unsafe maths.
# 2*N*K0 / _g1k0
# mul2 = (2 * 10**18) * N_COINS * K0 / _g1k0
mul2 = unsafe_div(
unsafe_mul(2 * 10**18 * N_COINS, K0), _g1k0
) # <--------------- K0 is approximately around D, which has a cap of
# 10**15 * 10**18 + 1, since we get that in get_y which is called
# with newton_D. _g1k0 > 0, so the entire expression can be unsafe.
# neg_fprime: uint256 = (S + S * mul2 / 10**18) + mul1 * N_COINS / K0 - mul2 * D / 10**18
neg_fprime = unsafe_sub(
unsafe_add(
unsafe_add(S, unsafe_div(unsafe_mul(S, mul2), 10**18)),
unsafe_div(unsafe_mul(mul1, N_COINS), K0),
),
unsafe_div(unsafe_mul(mul2, D), 10**18),
) # <--- mul1 is a big number but not huge: safe to unsafely multiply
# with N_coins. neg_fprime > 0 if this expression executes.
# mul2 is in the range of 10**18, since K0 is in that range, S * mul2
# is safe. The first three sums can be done using unsafe math safely
# and since the final expression will be small since mul2 is small, we
# can safely do the entire expression unsafely.
# D -= f / fprime
# D * (neg_fprime + S) / neg_fprime
D_plus = unsafe_div(D * unsafe_add(neg_fprime, S), neg_fprime)
# D*D / neg_fprime
D_minus = unsafe_div(D * D, neg_fprime)
# Since we know K0 > 0, and neg_fprime > 0, several unsafe operations
# are possible in the following. Also, (10**18 - K0) is safe to mul.
# So the only expressions we keep safe are (D_minus + ...) and (D * ...)
if 10**18 > K0:
# D_minus += D * (mul1 / neg_fprime) / 10**18 * (10**18 - K0) / K0
D_minus += unsafe_div(
unsafe_mul(
unsafe_div(D * unsafe_div(mul1, neg_fprime), 10**18),
unsafe_sub(10**18, K0),
),
K0,
)
else:
# D_minus -= D * (mul1 / neg_fprime) / 10**18 * (K0 - 10**18) / K0
D_minus -= unsafe_div(
unsafe_mul(
unsafe_div(D * unsafe_div(mul1, neg_fprime), 10**18),
unsafe_sub(K0, 10**18),
),
K0,
)
if D_plus > D_minus:
D = unsafe_sub(D_plus, D_minus) # <--------- Safe since we check.
else:
D = unsafe_div(unsafe_sub(D_minus, D_plus), 2)
if D > D_prev:
diff = unsafe_sub(D, D_prev)
else:
diff = unsafe_sub(D_prev, D)
# Could reduce precision for gas efficiency here:
if unsafe_mul(diff, 10**14) < max(10**16, D):
# Test that we are safe with the next get_y
for _x in x:
frac = unsafe_div(unsafe_mul(_x, 10**18), D)
assert frac >= 10**16 - 1 and frac < 10**20 + 1, "Unsafe values x[i]"
return D
raise "Did not converge"
@external
@view
def get_y(
_ANN: uint256, _gamma: uint256, x: uint256[N_COINS], _D: uint256, i: uint256
) -> uint256[2]:
"""
@notice Calculate x[i] given other balances x[0..N_COINS-1] and invariant D.
@dev ANN = A * N**N.
@param _ANN AMM.A() value.
@param _gamma AMM.gamma() value.
@param x Balances multiplied by prices and precisions of all coins.
@param _D Invariant.
@param i Index of coin to calculate y.
"""
# Safety checks
assert _ANN > MIN_A - 1 and _ANN < MAX_A + 1 # dev: unsafe values A
assert _gamma > MIN_GAMMA - 1 and _gamma < MAX_GAMMA + 1 # dev: unsafe values gamma
assert _D > 10**17 - 1 and _D < 10**15 * 10**18 + 1 # dev: unsafe values D
frac: uint256 = 0
for k in range(3):
if k != i:
frac = x[k] * 10**18 / _D
assert frac > 10**16 - 1 and frac < 10**20 + 1, "Unsafe values x[i]"
# if above conditions are met, x[k] > 0
j: uint256 = 0
k: uint256 = 0
if i == 0:
j = 1
k = 2
elif i == 1:
j = 0
k = 2
elif i == 2:
j = 0
k = 1
ANN: int256 = convert(_ANN, int256)
gamma: int256 = convert(_gamma, int256)
D: int256 = convert(_D, int256)
x_j: int256 = convert(x[j], int256)
x_k: int256 = convert(x[k], int256)
gamma2: int256 = unsafe_mul(gamma, gamma)
a: int256 = 10**36 / 27
# 10**36/9 + 2*10**18*gamma/27 - D**2/x_j*gamma**2*ANN/27**2/convert(A_MULTIPLIER, int256)/x_k
b: int256 = (
unsafe_add(
10**36 / 9,
unsafe_div(unsafe_mul(2 * 10**18, gamma), 27)
)
- unsafe_div(
unsafe_div(
unsafe_div(
unsafe_mul(
unsafe_div(unsafe_mul(D, D), x_j),
gamma2
) * ANN,
27**2
),
convert(A_MULTIPLIER, int256)
),
x_k,
)
) # <------- The first two expressions can be unsafe, and unsafely added.
# 10**36/9 + gamma*(gamma + 4*10**18)/27 + gamma**2*(x_j+x_k-D)/D*ANN/27/convert(A_MULTIPLIER, int256)
c: int256 = (
unsafe_add(
10**36 / 9,
unsafe_div(unsafe_mul(gamma, unsafe_add(gamma, 4 * 10**18)), 27)
)
+ unsafe_div(
unsafe_div(
unsafe_mul(
unsafe_div(gamma2 * unsafe_sub(unsafe_add(x_j, x_k), D), D),
ANN
),
27
),
convert(A_MULTIPLIER, int256),
)
) # <--------- Same as above with the first two expressions. In the third
# expression, x_j + x_k will not overflow since we know their range from
# previous assert statements.
# (10**18 + gamma)**2/27
d: int256 = unsafe_div(unsafe_add(10**18, gamma)**2, 27)
# abs(3*a*c/b - b)
d0: int256 = abs(unsafe_mul(3, a) * c / b - b) # <------------ a is smol.
divider: int256 = 0
if d0 > 10**48:
divider = 10**30
elif d0 > 10**44:
divider = 10**26
elif d0 > 10**40:
divider = 10**22
elif d0 > 10**36:
divider = 10**18
elif d0 > 10**32:
divider = 10**14
elif d0 > 10**28:
divider = 10**10
elif d0 > 10**24:
divider = 10**6
elif d0 > 10**20:
divider = 10**2
else:
divider = 1
additional_prec: int256 = 0
if abs(a) > abs(b):
additional_prec = abs(unsafe_div(a, b))
a = unsafe_div(unsafe_mul(a, additional_prec), divider)
b = unsafe_div(b * additional_prec, divider)
c = unsafe_div(c * additional_prec, divider)
d = unsafe_div(d * additional_prec, divider)
else:
additional_prec = abs(unsafe_div(b, a))
a = unsafe_div(a / additional_prec, divider)
b = unsafe_div(unsafe_div(b, additional_prec), divider)
c = unsafe_div(unsafe_div(c, additional_prec), divider)
d = unsafe_div(unsafe_div(d, additional_prec), divider)
# 3*a*c/b - b
_3ac: int256 = unsafe_mul(3, a) * c
delta0: int256 = unsafe_div(_3ac, b) - b
# 9*a*c/b - 2*b - 27*a**2/b*d/b
delta1: int256 = (
unsafe_div(3 * _3ac, b)
- unsafe_mul(2, b)
- unsafe_div(unsafe_div(27 * a**2, b) * d, b)
)
# delta1**2 + 4*delta0**2/b*delta0
sqrt_arg: int256 = (
delta1**2 +
unsafe_div(4 * delta0**2, b) * delta0
)
sqrt_val: int256 = 0
if sqrt_arg > 0:
sqrt_val = convert(isqrt(convert(sqrt_arg, uint256)), int256)
else:
return [self._newton_y(_ANN, _gamma, x, _D, i), 0]
b_cbrt: int256 = 0
if b >= 0:
b_cbrt = convert(self._cbrt(convert(b, uint256)), int256)
else:
b_cbrt = -convert(self._cbrt(convert(-b, uint256)), int256)
second_cbrt: int256 = 0
if delta1 > 0:
# convert(self._cbrt(convert((delta1 + sqrt_val), uint256)/2), int256)
second_cbrt = convert(
self._cbrt(unsafe_div(convert(delta1 + sqrt_val, uint256), 2)),
int256
)
else:
second_cbrt = -convert(
self._cbrt(unsafe_div(convert(-(delta1 - sqrt_val), uint256), 2)),
int256
)
# b_cbrt*b_cbrt/10**18*second_cbrt/10**18
C1: int256 = unsafe_div(
unsafe_div(b_cbrt * b_cbrt, 10**18) * second_cbrt,
10**18
)
# (b + b*delta0/C1 - C1)/3
root_K0: int256 = unsafe_div(b + b * delta0 / C1 - C1, 3)
# D*D/27/x_k*D/x_j*root_K0/a
root: int256 = unsafe_div(
unsafe_div(
unsafe_div(unsafe_div(D * D, 27), x_k) * D,
x_j
) * root_K0,
a
)
out: uint256[2] = [
convert(root, uint256),
convert(unsafe_div(10**18 * root_K0, a), uint256)
]
frac = unsafe_div(out[0] * 10**18, _D)
assert frac >= 10**16 - 1 and frac < 10**20 + 1, "Unsafe value for y"
# due to precision issues, get_y can be off by 2 wei or so wrt _newton_y
return out
Fees and Pool Profits¶
The cryptoswap algorithm uses different fees, such as fee
, mid_fee
, out_fee
, or fee_gamma
to determine the fees charged, more on that here. All Fee values are denominated in 1e10 and can be changed by the admin.
Additionally, just as for other curve pools, there is an ADMIN_FEE
, which is hardcoded to 50%. All twocrypto-ng pools share a universal fee_receiver
, which is determined within the Factory contract.
xcp_profit
and xcp_profit_a
are used for tracking pool profits, which is necessary for the pool's rebalancing mechanism. These values are denominated in 1e18.
fee
¶
TriCrypto.fee() -> uint256:
Getter for the fee charged by the pool at the current state.
Returns: fee (uint256
).
Source code
@external
@view
def fee() -> uint256:
"""
@notice Returns the fee charged by the pool at current state.
@dev Not to be confused with the fee charged at liquidity action, since
there the fee is calculated on `xp` AFTER liquidity is added or
removed.
@return uint256 fee bps.
"""
return self._fee(self.xp())
@internal
@view
def _fee(xp: uint256[N_COINS]) -> uint256:
fee_params: uint256[3] = self._unpack(self.packed_fee_params)
f: uint256 = MATH.reduction_coefficient(xp, fee_params[2])
return unsafe_div(
fee_params[0] * f + fee_params[1] * (10**18 - f),
10**18
)
@external
@view
def reduction_coefficient(x: uint256[N_COINS], fee_gamma: uint256) -> uint256:
"""
@notice Calculates the reduction coefficient for the given x and fee_gamma
@dev This method is used for calculating fees.
@param x The x values
@param fee_gamma The fee gamma value
"""
return self._reduction_coefficient(x, fee_gamma)
@internal
@pure
def _reduction_coefficient(x: uint256[N_COINS], fee_gamma: uint256) -> uint256:
# fee_gamma / (fee_gamma + (1 - K))
# where
# K = prod(x) / (sum(x) / N)**N
# (all normalized to 1e18)
S: uint256 = x[0] + x[1] + x[2]
# Could be good to pre-sort x, but it is used only for dynamic fee
K: uint256 = 10**18 * N_COINS * x[0] / S
K = unsafe_div(K * N_COINS * x[1], S) # <- unsafe div is safu.
K = unsafe_div(K * N_COINS * x[2], S)
if fee_gamma > 0:
K = fee_gamma * 10**18 / (fee_gamma + 10**18 - K)
return K
mid_fee
¶
TriCrypto.mid_fee() -> uint256:
Getter for the current mid_fee
. This is the minimum fee and is charged when the pool is completely balanced.
Returns: mid fee (uint256
).
Source code
out_fee
¶
TriCrypto.out_fee() -> uint256:
Getter for the "out-fee". This is the maximum fee and is charged when the pool is completely imbalanced.
Returns: out fee (uint256
).
Source code
fee_gamma
¶
TriCrypto.fee_gamma() -> uint256:
Getter for the current "fee-gamma". This parameter modifies the rate at which fees rise as imbalance intensifies. Smaller values result in rapid fee hikes with growing imbalances, while larger values lead to more gradual increments in fees as imbalance expands.
Returns: fee gamma (uint256
).
Source code
packed_fee_params
¶
TriCrypto.packed_fee_params() -> uint256: view
Getter for the packed fee parameters.
Returns: packed fee params (uint256
).
fee_receiver
¶
TriCrypto.fee_receiver() -> address: view
Getter for the fee receiver of the admin fees. This address is set within the Tricrypto Factory. Every pool created through the Factory has the same fee receiver.
Returns: fee receiver (address
).
Source code
interface Factory:
def admin() -> address: view
def fee_receiver() -> address: view
def views_implementation() -> address: view
@external
@view
def fee_receiver() -> address:
"""
@notice Returns the address of the admin fee receiver.
@return address Fee receiver.
"""
return Factory(self.factory).fee_receiver()
ADMIN_FEE
¶
TriCrypto.ADMIN_FEE() -> uint256: view
Getter for the admin fee of the pool. This value is hardcoded to 50% (5000000000).
Returns: admin fee (uint256
).
claim_admin_fees
¶
CryptoSwap.claim_admin_fees() -> uint256:
Function to claim the accumulated admin fees from the pool and send them to the fee receiver.
Emits: ClaimAdminFee
Source code
event ClaimAdminFee:
admin: indexed(address)
tokens: uint256
@external
@nonreentrant("lock")
def claim_admin_fees():
"""
@notice Claim admin fees. Callable by anyone.
"""
self._claim_admin_fees()
@internal
def _claim_admin_fees():
"""
@notice Claims admin fees and sends it to fee_receiver set in the factory.
"""
A_gamma: uint256[2] = self._A_gamma()
xcp_profit: uint256 = self.xcp_profit # <---------- Current pool profits.
xcp_profit_a: uint256 = self.xcp_profit_a # <- Profits at previous claim.
total_supply: uint256 = self.totalSupply
# Do not claim admin fees if:
# 1. insufficient profits accrued since last claim, and
# 2. there are less than 10**18 (or 1 unit of) lp tokens, else it can lead
# to manipulated virtual prices.
if xcp_profit <= xcp_profit_a or total_supply < 10**18:
return
# Claim tokens belonging to the admin here. This is done by 'gulping'
# pool tokens that have accrued as fees, but not accounted in pool's
# `self.balances` yet: pool balances only account for incoming and
# outgoing tokens excluding fees. Following 'gulps' fees:
for i in range(N_COINS):
if coins[i] == WETH20:
self.balances[i] = self.balance
else:
self.balances[i] = ERC20(coins[i]).balanceOf(self)
# If the pool has made no profits, `xcp_profit == xcp_profit_a`
# and the pool gulps nothing in the previous step.
vprice: uint256 = self.virtual_price
# Admin fees are calculated as follows.
# 1. Calculate accrued profit since last claim. `xcp_profit`
# is the current profits. `xcp_profit_a` is the profits
# at the previous claim.
# 2. Take out admin's share, which is hardcoded at 5 * 10**9.
# (50% => half of 100% => 10**10 / 2 => 5 * 10**9).
# 3. Since half of the profits go to rebalancing the pool, we
# are left with half; so divide by 2.
fees: uint256 = unsafe_div(
unsafe_sub(xcp_profit, xcp_profit_a) * ADMIN_FEE, 2 * 10**10
)
# ------------------------------ Claim admin fees by minting admin's share
# of the pool in LP tokens.
receiver: address = Factory(self.factory).fee_receiver()
if receiver != empty(address) and fees > 0:
frac: uint256 = vprice * 10**18 / (vprice - fees) - 10**18
claimed: uint256 = self.mint_relative(receiver, frac)
xcp_profit -= fees * 2
self.xcp_profit = xcp_profit
log ClaimAdminFee(receiver, claimed)
# ------------------------------------------- Recalculate D b/c we gulped.
D: uint256 = MATH.newton_D(A_gamma[0], A_gamma[1], self.xp(), 0)
self.D = D
# ------------------- Recalculate virtual_price following admin fee claim.
# In this instance we do not check if current virtual price is greater
# than old virtual price, since the claim process can result
# in a small decrease in pool's value.
self.virtual_price = 10**18 * self.get_xcp(D) / self.totalSupply
self.xcp_profit_a = xcp_profit # <------------ Cache last claimed profit.
@external
@view
def newton_D(
ANN: uint256,
gamma: uint256,
x_unsorted: uint256[N_COINS],
K0_prev: uint256 = 0,
) -> uint256:
"""
@notice Finding the invariant via newtons method using good initial guesses.
@dev ANN is higher by the factor A_MULTIPLIER
@dev ANN is already A * N**N
@param ANN the A * N**N value
@param gamma the gamma value
@param x_unsorted the array of coin balances (not sorted)
@param K0_prev apriori for newton's method derived from get_y_int. Defaults
to zero (no apriori)
"""
x: uint256[N_COINS] = self._sort(x_unsorted)
assert x[0] < max_value(uint256) / 10**18 * N_COINS**N_COINS # dev: out of limits
assert x[0] > 0 # dev: empty pool
# Safe to do unsafe add since we checked largest x's bounds previously
S: uint256 = unsafe_add(unsafe_add(x[0], x[1]), x[2])
D: uint256 = 0
if K0_prev == 0:
# Geometric mean of 3 numbers cannot be larger than the largest number
# so the following is safe to do:
D = unsafe_mul(N_COINS, self._geometric_mean(x))
else:
if S > 10**36:
D = self._cbrt(
unsafe_div(
unsafe_div(x[0] * x[1], 10**36) * x[2],
K0_prev
) * 27 * 10**12
)
elif S > 10**24:
D = self._cbrt(
unsafe_div(
unsafe_div(x[0] * x[1], 10**24) * x[2],
K0_prev
) * 27 * 10**6
)
else:
D = self._cbrt(
unsafe_div(
unsafe_div(x[0] * x[1], 10**18) * x[2],
K0_prev
) * 27
)
# D not zero here if K0_prev > 0, and we checked if x[0] is gt 0.
# initialise variables:
K0: uint256 = 0
_g1k0: uint256 = 0
mul1: uint256 = 0
mul2: uint256 = 0
neg_fprime: uint256 = 0
D_plus: uint256 = 0
D_minus: uint256 = 0
D_prev: uint256 = 0
diff: uint256 = 0
frac: uint256 = 0
for i in range(255):
D_prev = D
# K0 = 10**18 * x[0] * N_COINS / D * x[1] * N_COINS / D * x[2] * N_COINS / D
K0 = unsafe_div(
unsafe_mul(
unsafe_mul(
unsafe_div(
unsafe_mul(
unsafe_mul(
unsafe_div(
unsafe_mul(
unsafe_mul(10**18, x[0]), N_COINS
),
D,
),
x[1],
),
N_COINS,
),
D,
),
x[2],
),
N_COINS,
),
D,
) # <-------- We can convert the entire expression using unsafe math.
# since x_i is not too far from D, so overflow is not expected. Also
# D > 0, since we proved that already. unsafe_div is safe. K0 > 0
# since we can safely assume that D < 10**18 * x[0]. K0 is also
# in the range of 10**18 (it's a property).
_g1k0 = unsafe_add(gamma, 10**18) # <--------- safe to do unsafe_add.
if _g1k0 > K0: # The following operations can safely be unsafe.
_g1k0 = unsafe_add(unsafe_sub(_g1k0, K0), 1)
else:
_g1k0 = unsafe_add(unsafe_sub(K0, _g1k0), 1)
# D / (A * N**N) * _g1k0**2 / gamma**2
# mul1 = 10**18 * D / gamma * _g1k0 / gamma * _g1k0 * A_MULTIPLIER / ANN
mul1 = unsafe_div(
unsafe_mul(
unsafe_mul(
unsafe_div(
unsafe_mul(
unsafe_div(unsafe_mul(10**18, D), gamma), _g1k0
),
gamma,
),
_g1k0,
),
A_MULTIPLIER,
),
ANN,
) # <------ Since D > 0, gamma is small, _g1k0 is small, the rest are
# non-zero and small constants, and D has a cap in this method,
# we can safely convert everything to unsafe maths.
# 2*N*K0 / _g1k0
# mul2 = (2 * 10**18) * N_COINS * K0 / _g1k0
mul2 = unsafe_div(
unsafe_mul(2 * 10**18 * N_COINS, K0), _g1k0
) # <--------------- K0 is approximately around D, which has a cap of
# 10**15 * 10**18 + 1, since we get that in get_y which is called
# with newton_D. _g1k0 > 0, so the entire expression can be unsafe.
# neg_fprime: uint256 = (S + S * mul2 / 10**18) + mul1 * N_COINS / K0 - mul2 * D / 10**18
neg_fprime = unsafe_sub(
unsafe_add(
unsafe_add(S, unsafe_div(unsafe_mul(S, mul2), 10**18)),
unsafe_div(unsafe_mul(mul1, N_COINS), K0),
),
unsafe_div(unsafe_mul(mul2, D), 10**18),
) # <--- mul1 is a big number but not huge: safe to unsafely multiply
# with N_coins. neg_fprime > 0 if this expression executes.
# mul2 is in the range of 10**18, since K0 is in that range, S * mul2
# is safe. The first three sums can be done using unsafe math safely
# and since the final expression will be small since mul2 is small, we
# can safely do the entire expression unsafely.
# D -= f / fprime
# D * (neg_fprime + S) / neg_fprime
D_plus = unsafe_div(D * unsafe_add(neg_fprime, S), neg_fprime)
# D*D / neg_fprime
D_minus = unsafe_div(D * D, neg_fprime)
# Since we know K0 > 0, and neg_fprime > 0, several unsafe operations
# are possible in the following. Also, (10**18 - K0) is safe to mul.
# So the only expressions we keep safe are (D_minus + ...) and (D * ...)
if 10**18 > K0:
# D_minus += D * (mul1 / neg_fprime) / 10**18 * (10**18 - K0) / K0
D_minus += unsafe_div(
unsafe_mul(
unsafe_div(D * unsafe_div(mul1, neg_fprime), 10**18),
unsafe_sub(10**18, K0),
),
K0,
)
else:
# D_minus -= D * (mul1 / neg_fprime) / 10**18 * (K0 - 10**18) / K0
D_minus -= unsafe_div(
unsafe_mul(
unsafe_div(D * unsafe_div(mul1, neg_fprime), 10**18),
unsafe_sub(K0, 10**18),
),
K0,
)
if D_plus > D_minus:
D = unsafe_sub(D_plus, D_minus) # <--------- Safe since we check.
else:
D = unsafe_div(unsafe_sub(D_minus, D_plus), 2)
if D > D_prev:
diff = unsafe_sub(D, D_prev)
else:
diff = unsafe_sub(D_prev, D)
# Could reduce precision for gas efficiency here:
if unsafe_mul(diff, 10**14) < max(10**16, D):
# Test that we are safe with the next get_y
for _x in x:
frac = unsafe_div(unsafe_mul(_x, 10**18), D)
assert frac >= 10**16 - 1 and frac < 10**20 + 1, "Unsafe values x[i]"
return D
raise "Did not converge"
xcp_profit
¶
TriCrypto.xcp_profit() -> uint256:
Getter for the current pool profits.
Returns: current profits (uint256
).
xcp_profit_a
¶
TriCrypto.xcp_profit_a() -> uint256:
Getter for the full profit at the last claim of admin fees.
Returns: profit at last claim (uint256
).
Price Scaling¶
Curve v2 pools automatically adjust liquidity to optimize depth close to the prevailing market rates, reducing slippage. More here. Price scaling parameter can be adjusted by the admin.
price_scale
¶
TriCrypto.price_scale(k: uint256) -> uint256:
Getter for the price scale of the coin at index k
with regard to the coin at index 0. Price scale determines the price band around which liquidity is concentrated and is conditionally updated when calling the functions add_liquidity
, remove_liquidity_one_coin
, exchange
, exchange_underlying
or exchange_extended
.
Returns: last price (uint256
).
Input | Type | Description |
---|---|---|
k | uint256 | Index of the coin. |
Source code
price_scale_packed: uint256 # <------------------------ Internal price scale.
@external
@view
def price_scale(k: uint256) -> uint256:
"""
@notice Returns the price scale of the coin at index `k` w.r.t the coin
at index 0.
@dev Price scale determines the price band around which liquidity is
concentrated.
@param k The index of the coin.
@return uint256 Price scale of coin.
"""
return self._unpack_prices(self.price_scale_packed)[k]
@internal
def tweak_price(
A_gamma: uint256[2],
_xp: uint256[N_COINS],
new_D: uint256,
K0_prev: uint256 = 0,
) -> uint256:
"""
@notice Tweaks price_oracle, last_price and conditionally adjusts
price_scale. This is called whenever there is an unbalanced
liquidity operation: _exchange, add_liquidity, or
remove_liquidity_one_coin.
@dev Contains main liquidity rebalancing logic, by tweaking `price_scale`.
@param A_gamma Array of A and gamma parameters.
@param _xp Array of current balances.
@param new_D New D value.
@param K0_prev Initial guess for `newton_D`.
"""
# ---------------------------- Read storage ------------------------------
rebalancing_params: uint256[3] = self._unpack(
self.packed_rebalancing_params
) # <---------- Contains: allowed_extra_profit, adjustment_step, ma_time.
price_oracle: uint256[N_COINS - 1] = self._unpack_prices(
self.price_oracle_packed
)
last_prices: uint256[N_COINS - 1] = self._unpack_prices(
self.last_prices_packed
)
packed_price_scale: uint256 = self.price_scale_packed
price_scale: uint256[N_COINS - 1] = self._unpack_prices(
packed_price_scale
)
total_supply: uint256 = self.totalSupply
old_xcp_profit: uint256 = self.xcp_profit
old_virtual_price: uint256 = self.virtual_price
last_prices_timestamp: uint256 = self.last_prices_timestamp
# ----------------------- Update MA if needed ----------------------------
if last_prices_timestamp < block.timestamp:
# The moving average price oracle is calculated using the last_price
# of the trade at the previous block, and the price oracle logged
# before that trade. This can happen only once per block.
# ------------------ Calculate moving average params -----------------
alpha: uint256 = MATH.wad_exp(
-convert(
unsafe_div(
(block.timestamp - last_prices_timestamp) * 10**18,
rebalancing_params[2] # <----------------------- ma_time.
),
int256,
)
)
for k in range(N_COINS - 1):
# ----------------- We cap state price that goes into the EMA with
# 2 x price_scale.
price_oracle[k] = unsafe_div(
min(last_prices[k], 2 * price_scale[k]) * (10**18 - alpha) +
price_oracle[k] * alpha, # ^-------- Cap spot price into EMA.
10**18
)
self.price_oracle_packed = self._pack_prices(price_oracle)
self.last_prices_timestamp = block.timestamp # <---- Store timestamp.
# price_oracle is used further on to calculate its vector
# distance from price_scale. This distance is used to calculate
# the amount of adjustment to be done to the price_scale.
# ------------------ If new_D is set to 0, calculate it ------------------
D_unadjusted: uint256 = new_D
if new_D == 0: # <--------------------------- _exchange sets new_D to 0.
D_unadjusted = MATH.newton_D(A_gamma[0], A_gamma[1], _xp, K0_prev)
# ----------------------- Calculate last_prices --------------------------
last_prices = MATH.get_p(_xp, D_unadjusted, A_gamma)
for k in range(N_COINS - 1):
last_prices[k] = unsafe_div(last_prices[k] * price_scale[k], 10**18)
self.last_prices_packed = self._pack_prices(last_prices)
# ---------- Update profit numbers without price adjustment first --------
xp: uint256[N_COINS] = empty(uint256[N_COINS])
xp[0] = unsafe_div(D_unadjusted, N_COINS)
for k in range(N_COINS - 1):
xp[k + 1] = D_unadjusted * 10**18 / (N_COINS * price_scale[k])
# ------------------------- Update xcp_profit ----------------------------
xcp_profit: uint256 = 10**18
virtual_price: uint256 = 10**18
if old_virtual_price > 0:
xcp: uint256 = MATH.geometric_mean(xp)
virtual_price = 10**18 * xcp / total_supply
xcp_profit = unsafe_div(
old_xcp_profit * virtual_price,
old_virtual_price
) # <---------------- Safu to do unsafe_div as old_virtual_price > 0.
# If A and gamma are not undergoing ramps (t < block.timestamp),
# ensure new virtual_price is not less than old virtual_price,
# else the pool suffers a loss.
if self.future_A_gamma_time < block.timestamp:
assert virtual_price > old_virtual_price, "Loss"
self.xcp_profit = xcp_profit
# ------------ Rebalance liquidity if there's enough profits to adjust it:
if virtual_price * 2 - 10**18 > xcp_profit + 2 * rebalancing_params[0]:
# allowed_extra_profit --------^
# ------------------- Get adjustment step ----------------------------
# Calculate the vector distance between price_scale and
# price_oracle.
norm: uint256 = 0
ratio: uint256 = 0
for k in range(N_COINS - 1):
ratio = unsafe_div(price_oracle[k] * 10**18, price_scale[k])
# unsafe_div because we did safediv before ----^
if ratio > 10**18:
ratio = unsafe_sub(ratio, 10**18)
else:
ratio = unsafe_sub(10**18, ratio)
norm = unsafe_add(norm, ratio**2)
norm = isqrt(norm) # <-------------------- isqrt is not in base 1e18.
adjustment_step: uint256 = max(
rebalancing_params[1], unsafe_div(norm, 5)
) # ^------------------------------------- adjustment_step.
if norm > adjustment_step: # <---------- We only adjust prices if the
# vector distance between price_oracle and price_scale is
# large enough. This check ensures that no rebalancing
# occurs if the distance is low i.e. the pool prices are
# pegged to the oracle prices.
# ------------------------------------- Calculate new price scale.
p_new: uint256[N_COINS - 1] = empty(uint256[N_COINS - 1])
for k in range(N_COINS - 1):
p_new[k] = unsafe_div(
price_scale[k] * unsafe_sub(norm, adjustment_step)
+ adjustment_step * price_oracle[k],
norm
) # <- norm is non-zero and gt adjustment_step; unsafe = safe
# ---------------- Update stale xp (using price_scale) with p_new.
xp = _xp
for k in range(N_COINS - 1):
xp[k + 1] = unsafe_div(_xp[k + 1] * p_new[k], price_scale[k])
# unsafe_div because we did safediv before ----^
# ------------------------------------------ Update D with new xp.
D: uint256 = MATH.newton_D(A_gamma[0], A_gamma[1], xp, 0)
for k in range(N_COINS):
frac: uint256 = xp[k] * 10**18 / D # <----- Check validity of
assert (frac > 10**16 - 1) and (frac < 10**20 + 1) # p_new.
xp[0] = D / N_COINS
for k in range(N_COINS - 1):
xp[k + 1] = D * 10**18 / (N_COINS * p_new[k]) # <---- Convert
# xp to real prices.
# ---------- Calculate new virtual_price using new xp and D. Reuse
# `old_virtual_price` (but it has new virtual_price).
old_virtual_price = unsafe_div(
10**18 * MATH.geometric_mean(xp), total_supply
) # <----- unsafe_div because we did safediv before (if vp>1e18)
# ---------------------------- Proceed if we've got enough profit.
if (
old_virtual_price > 10**18 and
2 * old_virtual_price - 10**18 > xcp_profit
):
packed_price_scale = self._pack_prices(p_new)
self.D = D
self.virtual_price = old_virtual_price
self.price_scale_packed = packed_price_scale
return packed_price_scale
# --------- price_scale was not adjusted. Update the profit counter and D.
self.D = D_unadjusted
self.virtual_price = virtual_price
return packed_price_scale
allowed_extra_profit
¶
TriCrypto.allowed_extra_profit() -> uint256:
Getter for the allowed extra profit value.
Returns: allowed extra profit (uint256
).
Source code
packed_rebalancing_params: public(uint256) # <---------- Contains rebalancing
# parameters allowed_extra_profit, adjustment_step, and ma_time.
@view
@external
def allowed_extra_profit() -> uint256:
"""
@notice Returns the current allowed extra profit
@return uint256 allowed_extra_profit value.
"""
return self._unpack(self.packed_rebalancing_params)[0]
adjustment_step
¶
TriCrypto.adjustment_step() -> uint256:
Getter for the adjustment step value.
Returns: adjustment step (uint256
).
Source code
packed_rebalancing_params: public(uint256) # <---------- Contains rebalancing
# parameters allowed_extra_profit, adjustment_step, and ma_time.
@view
@external
def adjustment_step() -> uint256:
"""
@notice Returns the current adjustment step
@return uint256 adjustment_step value.
"""
return self._unpack(self.packed_rebalancing_params)[1]
packed_rebalancing_params
¶
TriCrypto.packed_rebalancing_params() -> uint256: view
Getter for the packed rebalancing parameters, consisting of allowed_extra_profit
, adjustment_step
, and ma_time
.
Returns: packed rebalancing parameters (uint256
).
Source code
Bonding Curve Parameters¶
A bonding curve is used to determine asset prices according to the pool's supply of each asset, more here.
Bonding curve parameters A
and gamma
values are upgradable by the the pools admin.
A
¶
CryptoSwap.A() -> uint256:
Getter for the current pool amplification parameter.
Returns: A (uint256
).
Source code
@view
@external
def A() -> uint256:
"""
@notice Returns the current pool amplification parameter.
@return uint256 A param.
"""
return self._A_gamma()[0]
@view
@internal
def _A_gamma() -> uint256[2]:
t1: uint256 = self.future_A_gamma_time
A_gamma_1: uint256 = self.future_A_gamma
gamma1: uint256 = A_gamma_1 & 2**128 - 1
A1: uint256 = A_gamma_1 >> 128
if block.timestamp < t1:
# --------------- Handle ramping up and down of A --------------------
A_gamma_0: uint256 = self.initial_A_gamma
t0: uint256 = self.initial_A_gamma_time
t1 -= t0
t0 = block.timestamp - t0
t2: uint256 = t1 - t0
A1 = ((A_gamma_0 >> 128) * t2 + A1 * t0) / t1
gamma1 = ((A_gamma_0 & 2**128 - 1) * t2 + gamma1 * t0) / t1
return [A1, gamma1]
gamma
¶
CryptoSwap.gamma() -> uint256:
Getter for the current pool gamma parameter.
Returns: gamma (uint256
).
Source code
@view
@external
def gamma() -> uint256:
"""
@notice Returns the current pool gamma parameter.
@return uint256 gamma param.
"""
return self._A_gamma()[1]
@view
@internal
def _A_gamma() -> uint256[2]:
t1: uint256 = self.future_A_gamma_time
A_gamma_1: uint256 = self.future_A_gamma
gamma1: uint256 = A_gamma_1 & 2**128 - 1
A1: uint256 = A_gamma_1 >> 128
if block.timestamp < t1:
# --------------- Handle ramping up and down of A --------------------
A_gamma_0: uint256 = self.initial_A_gamma
t0: uint256 = self.initial_A_gamma_time
t1 -= t0
t0 = block.timestamp - t0
t2: uint256 = t1 - t0
A1 = ((A_gamma_0 >> 128) * t2 + A1 * t0) / t1
gamma1 = ((A_gamma_0 & 2**128 - 1) * t2 + gamma1 * t0) / t1
return [A1, gamma1]
Oracle Methods¶
All pools have their own built in exponential moving average price oracle, which are updated through the internal tweak_price
method when calling _exchange
, add_liquidity
or remove_liquidity_one_coin
.
tweak_price(A_gamma: uint256[2], _xp: uint256[N_COINS], new_D: uint256, K0_prev: uint256 = 0) -> uint256:
@internal
def tweak_price(
A_gamma: uint256[2],
_xp: uint256[N_COINS],
new_D: uint256,
K0_prev: uint256 = 0,
) -> uint256:
"""
@notice Tweaks price_oracle, last_price and conditionally adjusts
price_scale. This is called whenever there is an unbalanced
liquidity operation: _exchange, add_liquidity, or
remove_liquidity_one_coin.
@dev Contains main liquidity rebalancing logic, by tweaking `price_scale`.
@param A_gamma Array of A and gamma parameters.
@param _xp Array of current balances.
@param new_D New D value.
@param K0_prev Initial guess for `newton_D`.
"""
# ---------------------------- Read storage ------------------------------
rebalancing_params: uint256[3] = self._unpack(
self.packed_rebalancing_params
) # <---------- Contains: allowed_extra_profit, adjustment_step, ma_time.
price_oracle: uint256[N_COINS - 1] = self._unpack_prices(
self.price_oracle_packed
)
last_prices: uint256[N_COINS - 1] = self._unpack_prices(
self.last_prices_packed
)
packed_price_scale: uint256 = self.price_scale_packed
price_scale: uint256[N_COINS - 1] = self._unpack_prices(
packed_price_scale
)
total_supply: uint256 = self.totalSupply
old_xcp_profit: uint256 = self.xcp_profit
old_virtual_price: uint256 = self.virtual_price
last_prices_timestamp: uint256 = self.last_prices_timestamp
# ----------------------- Update MA if needed ----------------------------
if last_prices_timestamp < block.timestamp:
# The moving average price oracle is calculated using the last_price
# of the trade at the previous block, and the price oracle logged
# before that trade. This can happen only once per block.
# ------------------ Calculate moving average params -----------------
alpha: uint256 = MATH.wad_exp(
-convert(
unsafe_div(
(block.timestamp - last_prices_timestamp) * 10**18,
rebalancing_params[2] # <----------------------- ma_time.
),
int256,
)
)
for k in range(N_COINS - 1):
# ----------------- We cap state price that goes into the EMA with
# 2 x price_scale.
price_oracle[k] = unsafe_div(
min(last_prices[k], 2 * price_scale[k]) * (10**18 - alpha) +
price_oracle[k] * alpha, # ^-------- Cap spot price into EMA.
10**18
)
self.price_oracle_packed = self._pack_prices(price_oracle)
self.last_prices_timestamp = block.timestamp # <---- Store timestamp.
# price_oracle is used further on to calculate its vector
# distance from price_scale. This distance is used to calculate
# the amount of adjustment to be done to the price_scale.
# ------------------ If new_D is set to 0, calculate it ------------------
D_unadjusted: uint256 = new_D
if new_D == 0: # <--------------------------- _exchange sets new_D to 0.
D_unadjusted = MATH.newton_D(A_gamma[0], A_gamma[1], _xp, K0_prev)
# ----------------------- Calculate last_prices --------------------------
last_prices = MATH.get_p(_xp, D_unadjusted, A_gamma)
for k in range(N_COINS - 1):
last_prices[k] = unsafe_div(last_prices[k] * price_scale[k], 10**18)
self.last_prices_packed = self._pack_prices(last_prices)
# ---------- Update profit numbers without price adjustment first --------
xp: uint256[N_COINS] = empty(uint256[N_COINS])
xp[0] = unsafe_div(D_unadjusted, N_COINS)
for k in range(N_COINS - 1):
xp[k + 1] = D_unadjusted * 10**18 / (N_COINS * price_scale[k])
# ------------------------- Update xcp_profit ----------------------------
xcp_profit: uint256 = 10**18
virtual_price: uint256 = 10**18
if old_virtual_price > 0:
xcp: uint256 = MATH.geometric_mean(xp)
virtual_price = 10**18 * xcp / total_supply
xcp_profit = unsafe_div(
old_xcp_profit * virtual_price,
old_virtual_price
) # <---------------- Safu to do unsafe_div as old_virtual_price > 0.
# If A and gamma are not undergoing ramps (t < block.timestamp),
# ensure new virtual_price is not less than old virtual_price,
# else the pool suffers a loss.
if self.future_A_gamma_time < block.timestamp:
assert virtual_price > old_virtual_price, "Loss"
self.xcp_profit = xcp_profit
# ------------ Rebalance liquidity if there's enough profits to adjust it:
if virtual_price * 2 - 10**18 > xcp_profit + 2 * rebalancing_params[0]:
# allowed_extra_profit --------^
# ------------------- Get adjustment step ----------------------------
# Calculate the vector distance between price_scale and
# price_oracle.
norm: uint256 = 0
ratio: uint256 = 0
for k in range(N_COINS - 1):
ratio = unsafe_div(price_oracle[k] * 10**18, price_scale[k])
# unsafe_div because we did safediv before ----^
if ratio > 10**18:
ratio = unsafe_sub(ratio, 10**18)
else:
ratio = unsafe_sub(10**18, ratio)
norm = unsafe_add(norm, ratio**2)
norm = isqrt(norm) # <-------------------- isqrt is not in base 1e18.
adjustment_step: uint256 = max(
rebalancing_params[1], unsafe_div(norm, 5)
) # ^------------------------------------- adjustment_step.
if norm > adjustment_step: # <---------- We only adjust prices if the
# vector distance between price_oracle and price_scale is
# large enough. This check ensures that no rebalancing
# occurs if the distance is low i.e. the pool prices are
# pegged to the oracle prices.
# ------------------------------------- Calculate new price scale.
p_new: uint256[N_COINS - 1] = empty(uint256[N_COINS - 1])
for k in range(N_COINS - 1):
p_new[k] = unsafe_div(
price_scale[k] * unsafe_sub(norm, adjustment_step)
+ adjustment_step * price_oracle[k],
norm
) # <- norm is non-zero and gt adjustment_step; unsafe = safe
# ---------------- Update stale xp (using price_scale) with p_new.
xp = _xp
for k in range(N_COINS - 1):
xp[k + 1] = unsafe_div(_xp[k + 1] * p_new[k], price_scale[k])
# unsafe_div because we did safediv before ----^
# ------------------------------------------ Update D with new xp.
D: uint256 = MATH.newton_D(A_gamma[0], A_gamma[1], xp, 0)
for k in range(N_COINS):
frac: uint256 = xp[k] * 10**18 / D # <----- Check validity of
assert (frac > 10**16 - 1) and (frac < 10**20 + 1) # p_new.
xp[0] = D / N_COINS
for k in range(N_COINS - 1):
xp[k + 1] = D * 10**18 / (N_COINS * p_new[k]) # <---- Convert
# xp to real prices.
# ---------- Calculate new virtual_price using new xp and D. Reuse
# `old_virtual_price` (but it has new virtual_price).
old_virtual_price = unsafe_div(
10**18 * MATH.geometric_mean(xp), total_supply
) # <----- unsafe_div because we did safediv before (if vp>1e18)
# ---------------------------- Proceed if we've got enough profit.
if (
old_virtual_price > 10**18 and
2 * old_virtual_price - 10**18 > xcp_profit
):
packed_price_scale = self._pack_prices(p_new)
self.D = D
self.virtual_price = old_virtual_price
self.price_scale_packed = packed_price_scale
return packed_price_scale
# --------- price_scale was not adjusted. Update the profit counter and D.
self.D = D_unadjusted
self.virtual_price = virtual_price
return packed_price_scale
_unpack_prices()
is used to unpack _packed_prices
, which store all relevant vaules.
_unpack_prices()
@internal
@view
def _unpack_prices(_packed_prices: uint256) -> uint256[2]:
"""
@notice Unpacks N_COINS-1 prices from a uint256.
@param _packed_prices The packed prices
@return uint256[2] Unpacked prices
"""
unpacked_prices: uint256[N_COINS-1] = empty(uint256[N_COINS-1])
packed_prices: uint256 = _packed_prices
for k in range(N_COINS - 1):
unpacked_prices[k] = packed_prices & PRICE_MASK
packed_prices = packed_prices >> PRICE_SIZE
return unpacked_prices
price_oracle
¶
TriCrypto.price_oracle(k: uint256) -> uint256:
Getter for the oracle price of the coin at index k
with regard to coin at index 0. The price oracle is updated when calling functions such as add_liquidity
, remove_liquidity_one_coin
, exchange
, exchange_underlying
or exchange_extended
.
Returns: price (uint256
).
Input | Type | Description |
---|---|---|
k | uint256 | Index of the coin. |
Source code
@external
@view
@nonreentrant("lock")
def price_oracle(k: uint256) -> uint256:
"""
@notice Returns the oracle price of the coin at index `k` w.r.t the coin
at index 0.
@dev The oracle is an exponential moving average, with a periodicity
determined by `self.ma_time`. The aggregated prices are cached state
prices (dy/dx) calculated AFTER the latest trade.
@param k The index of the coin.
@return uint256 Price oracle value of kth coin.
"""
price_oracle: uint256 = self._unpack_prices(self.price_oracle_packed)[k]
price_scale: uint256 = self._unpack_prices(self.price_scale_packed)[k]
last_prices_timestamp: uint256 = self.last_prices_timestamp
if last_prices_timestamp < block.timestamp: # <------------ Update moving
# average if needed.
last_prices: uint256 = self._unpack_prices(self.last_prices_packed)[k]
ma_time: uint256 = self._unpack(self.packed_rebalancing_params)[2]
alpha: uint256 = MATH.wad_exp(
-convert(
(block.timestamp - last_prices_timestamp) * 10**18 / ma_time,
int256,
)
)
# ---- We cap state price that goes into the EMA with 2 x price_scale.
return (
min(last_prices, 2 * price_scale) * (10**18 - alpha) +
price_oracle * alpha
) / 10**18
return price_oracle
@internal
def tweak_price(
A_gamma: uint256[2],
_xp: uint256[N_COINS],
new_D: uint256,
K0_prev: uint256 = 0,
) -> uint256:
"""
@notice Tweaks price_oracle, last_price and conditionally adjusts
price_scale. This is called whenever there is an unbalanced
liquidity operation: _exchange, add_liquidity, or
remove_liquidity_one_coin.
@dev Contains main liquidity rebalancing logic, by tweaking `price_scale`.
@param A_gamma Array of A and gamma parameters.
@param _xp Array of current balances.
@param new_D New D value.
@param K0_prev Initial guess for `newton_D`.
"""
# ---------------------------- Read storage ------------------------------
rebalancing_params: uint256[3] = self._unpack(
self.packed_rebalancing_params
) # <---------- Contains: allowed_extra_profit, adjustment_step, ma_time.
price_oracle: uint256[N_COINS - 1] = self._unpack_prices(
self.price_oracle_packed
)
last_prices: uint256[N_COINS - 1] = self._unpack_prices(
self.last_prices_packed
)
packed_price_scale: uint256 = self.price_scale_packed
price_scale: uint256[N_COINS - 1] = self._unpack_prices(
packed_price_scale
)
total_supply: uint256 = self.totalSupply
old_xcp_profit: uint256 = self.xcp_profit
old_virtual_price: uint256 = self.virtual_price
last_prices_timestamp: uint256 = self.last_prices_timestamp
# ----------------------- Update MA if needed ----------------------------
if last_prices_timestamp < block.timestamp:
# The moving average price oracle is calculated using the last_price
# of the trade at the previous block, and the price oracle logged
# before that trade. This can happen only once per block.
# ------------------ Calculate moving average params -----------------
alpha: uint256 = MATH.wad_exp(
-convert(
unsafe_div(
(block.timestamp - last_prices_timestamp) * 10**18,
rebalancing_params[2] # <----------------------- ma_time.
),
int256,
)
)
for k in range(N_COINS - 1):
# ----------------- We cap state price that goes into the EMA with
# 2 x price_scale.
price_oracle[k] = unsafe_div(
min(last_prices[k], 2 * price_scale[k]) * (10**18 - alpha) +
price_oracle[k] * alpha, # ^-------- Cap spot price into EMA.
10**18
)
self.price_oracle_packed = self._pack_prices(price_oracle)
self.last_prices_timestamp = block.timestamp # <---- Store timestamp.
# price_oracle is used further on to calculate its vector
# distance from price_scale. This distance is used to calculate
# the amount of adjustment to be done to the price_scale.
# ------------------ If new_D is set to 0, calculate it ------------------
D_unadjusted: uint256 = new_D
if new_D == 0: # <--------------------------- _exchange sets new_D to 0.
D_unadjusted = MATH.newton_D(A_gamma[0], A_gamma[1], _xp, K0_prev)
# ----------------------- Calculate last_prices --------------------------
last_prices = MATH.get_p(_xp, D_unadjusted, A_gamma)
for k in range(N_COINS - 1):
last_prices[k] = unsafe_div(last_prices[k] * price_scale[k], 10**18)
self.last_prices_packed = self._pack_prices(last_prices)
# ---------- Update profit numbers without price adjustment first --------
xp: uint256[N_COINS] = empty(uint256[N_COINS])
xp[0] = unsafe_div(D_unadjusted, N_COINS)
for k in range(N_COINS - 1):
xp[k + 1] = D_unadjusted * 10**18 / (N_COINS * price_scale[k])
# ------------------------- Update xcp_profit ----------------------------
xcp_profit: uint256 = 10**18
virtual_price: uint256 = 10**18
if old_virtual_price > 0:
xcp: uint256 = MATH.geometric_mean(xp)
virtual_price = 10**18 * xcp / total_supply
xcp_profit = unsafe_div(
old_xcp_profit * virtual_price,
old_virtual_price
) # <---------------- Safu to do unsafe_div as old_virtual_price > 0.
# If A and gamma are not undergoing ramps (t < block.timestamp),
# ensure new virtual_price is not less than old virtual_price,
# else the pool suffers a loss.
if self.future_A_gamma_time < block.timestamp:
assert virtual_price > old_virtual_price, "Loss"
self.xcp_profit = xcp_profit
# ------------ Rebalance liquidity if there's enough profits to adjust it:
if virtual_price * 2 - 10**18 > xcp_profit + 2 * rebalancing_params[0]:
# allowed_extra_profit --------^
# ------------------- Get adjustment step ----------------------------
# Calculate the vector distance between price_scale and
# price_oracle.
norm: uint256 = 0
ratio: uint256 = 0
for k in range(N_COINS - 1):
ratio = unsafe_div(price_oracle[k] * 10**18, price_scale[k])
# unsafe_div because we did safediv before ----^
if ratio > 10**18:
ratio = unsafe_sub(ratio, 10**18)
else:
ratio = unsafe_sub(10**18, ratio)
norm = unsafe_add(norm, ratio**2)
norm = isqrt(norm) # <-------------------- isqrt is not in base 1e18.
adjustment_step: uint256 = max(
rebalancing_params[1], unsafe_div(norm, 5)
) # ^------------------------------------- adjustment_step.
if norm > adjustment_step: # <---------- We only adjust prices if the
# vector distance between price_oracle and price_scale is
# large enough. This check ensures that no rebalancing
# occurs if the distance is low i.e. the pool prices are
# pegged to the oracle prices.
# ------------------------------------- Calculate new price scale.
p_new: uint256[N_COINS - 1] = empty(uint256[N_COINS - 1])
for k in range(N_COINS - 1):
p_new[k] = unsafe_div(
price_scale[k] * unsafe_sub(norm, adjustment_step)
+ adjustment_step * price_oracle[k],
norm
) # <- norm is non-zero and gt adjustment_step; unsafe = safe
# ---------------- Update stale xp (using price_scale) with p_new.
xp = _xp
for k in range(N_COINS - 1):
xp[k + 1] = unsafe_div(_xp[k + 1] * p_new[k], price_scale[k])
# unsafe_div because we did safediv before ----^
# ------------------------------------------ Update D with new xp.
D: uint256 = MATH.newton_D(A_gamma[0], A_gamma[1], xp, 0)
for k in range(N_COINS):
frac: uint256 = xp[k] * 10**18 / D # <----- Check validity of
assert (frac > 10**16 - 1) and (frac < 10**20 + 1) # p_new.
xp[0] = D / N_COINS
for k in range(N_COINS - 1):
xp[k + 1] = D * 10**18 / (N_COINS * p_new[k]) # <---- Convert
# xp to real prices.
# ---------- Calculate new virtual_price using new xp and D. Reuse
# `old_virtual_price` (but it has new virtual_price).
old_virtual_price = unsafe_div(
10**18 * MATH.geometric_mean(xp), total_supply
) # <----- unsafe_div because we did safediv before (if vp>1e18)
# ---------------------------- Proceed if we've got enough profit.
if (
old_virtual_price > 10**18 and
2 * old_virtual_price - 10**18 > xcp_profit
):
packed_price_scale = self._pack_prices(p_new)
self.D = D
self.virtual_price = old_virtual_price
self.price_scale_packed = packed_price_scale
return packed_price_scale
# --------- price_scale was not adjusted. Update the profit counter and D.
self.D = D_unadjusted
self.virtual_price = virtual_price
return packed_price_scale
ma_time
¶
TriCrypto.ma_time() -> uint256:
Getter for the moving-average (ma) time in seconds.
Returns: ma time (uint256
).
Source code
packed_rebalancing_params: public(uint256) # <---------- Contains rebalancing
# parameters allowed_extra_profit, adjustment_step, and ma_time.
@view
@external
def ma_time() -> uint256:
"""
@notice Returns the current moving average time in seconds
@dev To get time in seconds, the parameter is multipled by ln(2)
One can expect off-by-one errors here.
@return uint256 ma_time value.
"""
return self._unpack(self.packed_rebalancing_params)[2] * 694 / 1000
lp_price
¶
TriCrypto.lp_price() -> uint256:
Function to calculate the current price of the LP token with regard to the coin at index 0.
Returns: LP token price (uint256
).
Source code
price_oracle_packed: uint256 # <------- Price target given by moving average.
PRICE_SIZE: constant(uint128) = 256 / (N_COINS - 1)
PRICE_MASK: constant(uint256) = 2**PRICE_SIZE - 1
@external
@view
@nonreentrant("lock")
def lp_price() -> uint256:
"""
@notice Calculates the current price of the LP token w.r.t coin at the
0th index
@return uint256 LP price.
"""
price_oracle: uint256[N_COINS-1] = self._unpack_prices(
self.price_oracle_packed
)
return (
3 * self.virtual_price * MATH.cbrt(price_oracle[0] * price_oracle[1])
) / 10**24
@internal
@view
def _unpack_prices(_packed_prices: uint256) -> uint256[2]:
"""
@notice Unpacks N_COINS-1 prices from a uint256.
@param _packed_prices The packed prices
@return uint256[2] Unpacked prices
"""
unpacked_prices: uint256[N_COINS-1] = empty(uint256[N_COINS-1])
packed_prices: uint256 = _packed_prices
for k in range(N_COINS - 1):
unpacked_prices[k] = packed_prices & PRICE_MASK
packed_prices = packed_prices >> PRICE_SIZE
return unpacked_prices
virtual_price
¶
TriCrypto.virtual_price() -> uint256:
get_virtual_price
≠ virtual_price
get_virtual_price
should not be confused with virtual_price
, which is a cached virtual price.
Getter for the cached virtual price. This variable provides a fast read by accessing the cached value instead of recalculating it.
Returns: cached virtual price (uint256
).
Source code
get_virtual_price
¶
TriCrypto.get_virtual_price() -> uint256:
get_virtual_price
≠ virtual_price
get_virtual_price
should not be confused with virtual_price
, which is a cached virtual price.
Function to calculate the current virtual price of the pool's LP token.
Returns: virtual price (uint256
).
Source code
D: public(uint256)
PRICE_SIZE: constant(uint128) = 256 / (N_COINS - 1)
PRICE_MASK: constant(uint256) = 2**PRICE_SIZE - 1
@external
@view
@nonreentrant("lock")
def get_virtual_price() -> uint256:
"""
@notice Calculates the current virtual price of the pool LP token.
@dev Not to be confused with `self.virtual_price` which is a cached
virtual price.
@return uint256 Virtual Price.
"""
return 10**18 * self.get_xcp(self.D) / self.totalSupply
@internal
@view
def get_xcp(D: uint256) -> uint256:
x: uint256[N_COINS] = empty(uint256[N_COINS])
x[0] = D / N_COINS
packed_prices: uint256 = self.price_scale_packed # <-- No precisions here
# because we don't switch to "real" units.
for i in range(1, N_COINS):
x[i] = D * 10**18 / (N_COINS * (packed_prices & PRICE_MASK))
packed_prices = packed_prices >> PRICE_SIZE
return MATH.geometric_mean(x)
@external
@view
def geometric_mean(_x: uint256[3]) -> uint256:
"""
@notice Calculate the geometric mean of a list of numbers in 1e18 precision.
@param _x list of 3 numbers to sort
"""
return self._geometric_mean(_x)
@internal
@view
def _geometric_mean(_x: uint256[3]) -> uint256:
# calculates a geometric mean for three numbers.
prod: uint256 = unsafe_div(
unsafe_div(_x[0] * _x[1], 10**18) * _x[2],
10**18
)
if prod == 0:
return 0
return self._cbrt(prod)
last_prices
¶
TriCrypto.last_prices(k: uint256) -> uint256:
Getter for the last price of the coin at index k
with regard to the coin at index 0. Last price is updated when calling the functions add_liquidity
, remove_liquidity_one_coin
, exchange
, exchange_underlying
or exchange_extended
.
Returns: last price (uint256
).
Input | Type | Description |
---|---|---|
k | uint256 | Index of the coin. |
Source code
last_prices_packed: uint256
last_prices_timestamp: public(uint256)
@external
@view
def last_prices(k: uint256) -> uint256:
"""
@notice Returns last price of the coin at index `k` w.r.t the coin
at index 0.
@dev last_prices returns the quote by the AMM for an infinitesimally small swap
after the last trade. It is not equivalent to the last traded price, and
is computed by taking the partial differential of `x` w.r.t `y`. The
derivative is calculated in `get_p` and then multiplied with price_scale
to give last_prices.
@param k The index of the coin.
@return uint256 Last logged price of coin.
"""
return self._unpack_prices(self.last_prices_packed)[k]
@internal
def tweak_price(
A_gamma: uint256[2],
_xp: uint256[N_COINS],
new_D: uint256,
K0_prev: uint256 = 0,
) -> uint256:
"""
@notice Tweaks price_oracle, last_price and conditionally adjusts
price_scale. This is called whenever there is an unbalanced
liquidity operation: _exchange, add_liquidity, or
remove_liquidity_one_coin.
@dev Contains main liquidity rebalancing logic, by tweaking `price_scale`.
@param A_gamma Array of A and gamma parameters.
@param _xp Array of current balances.
@param new_D New D value.
@param K0_prev Initial guess for `newton_D`.
"""
# ---------------------------- Read storage ------------------------------
rebalancing_params: uint256[3] = self._unpack(
self.packed_rebalancing_params
) # <---------- Contains: allowed_extra_profit, adjustment_step, ma_time.
price_oracle: uint256[N_COINS - 1] = self._unpack_prices(
self.price_oracle_packed
)
last_prices: uint256[N_COINS - 1] = self._unpack_prices(
self.last_prices_packed
)
packed_price_scale: uint256 = self.price_scale_packed
price_scale: uint256[N_COINS - 1] = self._unpack_prices(
packed_price_scale
)
total_supply: uint256 = self.totalSupply
old_xcp_profit: uint256 = self.xcp_profit
old_virtual_price: uint256 = self.virtual_price
last_prices_timestamp: uint256 = self.last_prices_timestamp
# ----------------------- Update MA if needed ----------------------------
if last_prices_timestamp < block.timestamp:
# The moving average price oracle is calculated using the last_price
# of the trade at the previous block, and the price oracle logged
# before that trade. This can happen only once per block.
# ------------------ Calculate moving average params -----------------
alpha: uint256 = MATH.wad_exp(
-convert(
unsafe_div(
(block.timestamp - last_prices_timestamp) * 10**18,
rebalancing_params[2] # <----------------------- ma_time.
),
int256,
)
)
for k in range(N_COINS - 1):
# ----------------- We cap state price that goes into the EMA with
# 2 x price_scale.
price_oracle[k] = unsafe_div(
min(last_prices[k], 2 * price_scale[k]) * (10**18 - alpha) +
price_oracle[k] * alpha, # ^-------- Cap spot price into EMA.
10**18
)
self.price_oracle_packed = self._pack_prices(price_oracle)
self.last_prices_timestamp = block.timestamp # <---- Store timestamp.
# price_oracle is used further on to calculate its vector
# distance from price_scale. This distance is used to calculate
# the amount of adjustment to be done to the price_scale.
# ------------------ If new_D is set to 0, calculate it ------------------
D_unadjusted: uint256 = new_D
if new_D == 0: # <--------------------------- _exchange sets new_D to 0.
D_unadjusted = MATH.newton_D(A_gamma[0], A_gamma[1], _xp, K0_prev)
# ----------------------- Calculate last_prices --------------------------
last_prices = MATH.get_p(_xp, D_unadjusted, A_gamma)
for k in range(N_COINS - 1):
last_prices[k] = unsafe_div(last_prices[k] * price_scale[k], 10**18)
self.last_prices_packed = self._pack_prices(last_prices)
# ---------- Update profit numbers without price adjustment first --------
xp: uint256[N_COINS] = empty(uint256[N_COINS])
xp[0] = unsafe_div(D_unadjusted, N_COINS)
for k in range(N_COINS - 1):
xp[k + 1] = D_unadjusted * 10**18 / (N_COINS * price_scale[k])
# ------------------------- Update xcp_profit ----------------------------
xcp_profit: uint256 = 10**18
virtual_price: uint256 = 10**18
if old_virtual_price > 0:
xcp: uint256 = MATH.geometric_mean(xp)
virtual_price = 10**18 * xcp / total_supply
xcp_profit = unsafe_div(
old_xcp_profit * virtual_price,
old_virtual_price
) # <---------------- Safu to do unsafe_div as old_virtual_price > 0.
# If A and gamma are not undergoing ramps (t < block.timestamp),
# ensure new virtual_price is not less than old virtual_price,
# else the pool suffers a loss.
if self.future_A_gamma_time < block.timestamp:
assert virtual_price > old_virtual_price, "Loss"
self.xcp_profit = xcp_profit
# ------------ Rebalance liquidity if there's enough profits to adjust it:
if virtual_price * 2 - 10**18 > xcp_profit + 2 * rebalancing_params[0]:
# allowed_extra_profit --------^
# ------------------- Get adjustment step ----------------------------
# Calculate the vector distance between price_scale and
# price_oracle.
norm: uint256 = 0
ratio: uint256 = 0
for k in range(N_COINS - 1):
ratio = unsafe_div(price_oracle[k] * 10**18, price_scale[k])
# unsafe_div because we did safediv before ----^
if ratio > 10**18:
ratio = unsafe_sub(ratio, 10**18)
else:
ratio = unsafe_sub(10**18, ratio)
norm = unsafe_add(norm, ratio**2)
norm = isqrt(norm) # <-------------------- isqrt is not in base 1e18.
adjustment_step: uint256 = max(
rebalancing_params[1], unsafe_div(norm, 5)
) # ^------------------------------------- adjustment_step.
if norm > adjustment_step: # <---------- We only adjust prices if the
# vector distance between price_oracle and price_scale is
# large enough. This check ensures that no rebalancing
# occurs if the distance is low i.e. the pool prices are
# pegged to the oracle prices.
# ------------------------------------- Calculate new price scale.
p_new: uint256[N_COINS - 1] = empty(uint256[N_COINS - 1])
for k in range(N_COINS - 1):
p_new[k] = unsafe_div(
price_scale[k] * unsafe_sub(norm, adjustment_step)
+ adjustment_step * price_oracle[k],
norm
) # <- norm is non-zero and gt adjustment_step; unsafe = safe
# ---------------- Update stale xp (using price_scale) with p_new.
xp = _xp
for k in range(N_COINS - 1):
xp[k + 1] = unsafe_div(_xp[k + 1] * p_new[k], price_scale[k])
# unsafe_div because we did safediv before ----^
# ------------------------------------------ Update D with new xp.
D: uint256 = MATH.newton_D(A_gamma[0], A_gamma[1], xp, 0)
for k in range(N_COINS):
frac: uint256 = xp[k] * 10**18 / D # <----- Check validity of
assert (frac > 10**16 - 1) and (frac < 10**20 + 1) # p_new.
xp[0] = D / N_COINS
for k in range(N_COINS - 1):
xp[k + 1] = D * 10**18 / (N_COINS * p_new[k]) # <---- Convert
# xp to real prices.
# ---------- Calculate new virtual_price using new xp and D. Reuse
# `old_virtual_price` (but it has new virtual_price).
old_virtual_price = unsafe_div(
10**18 * MATH.geometric_mean(xp), total_supply
) # <----- unsafe_div because we did safediv before (if vp>1e18)
# ---------------------------- Proceed if we've got enough profit.
if (
old_virtual_price > 10**18 and
2 * old_virtual_price - 10**18 > xcp_profit
):
packed_price_scale = self._pack_prices(p_new)
self.D = D
self.virtual_price = old_virtual_price
self.price_scale_packed = packed_price_scale
return packed_price_scale
# --------- price_scale was not adjusted. Update the profit counter and D.
self.D = D_unadjusted
self.virtual_price = virtual_price
return packed_price_scale
last_prices_timestamp
¶
TriCrypto.last_prices_timestamp() -> uint256:
Getter for the timestamp of the most recent update for last_prices
.
Returns: timestamp (uint256
).
Contract Info Methods¶
coins
¶
TriCrypto.coins(arg0: uint256) -> uint256: view
Getter for the coin at index arg0
.
Returns: coin (address
).
Input | Type | Description |
---|---|---|
k | uint256 | Index of the coin. |
balances
¶
TriCrypto.balances(arg0: uint256) -> uint256: view
Getter for the coin balance at index arg0
.
Returns: coin balance (address
).
Input | Type | Description |
---|---|---|
k | uint256 | Index of the coin. |
precisions
¶
TriCrypto.precisions() -> uint256[N_COINS]: view
Getter for the precision of each coin in the pool.
Returns: precisions (uint256[N_COINS]
).
Source code
N_COINS: constant(uint256) = 3
PRECISION: constant(uint256) = 10**18 # <------- The precision to convert to.
A_MULTIPLIER: constant(uint256) = 10000
packed_precisions: uint256
@view
@external
def precisions() -> uint256[N_COINS]: # <-------------- For by view contract.
"""
@notice Returns the precisions of each coin in the pool.
@return uint256[3] precisions of coins.
"""
return self._unpack(self.packed_precisions)
factory
¶
TriCrypto.factory() -> address: view
Getter for the Factory contract.
Returns: Factory (address
)
MATH
¶
TriCrypto.MATH() -> address: view
Getter for the math utility contract.
Returns: math contract (address
).